Influence of fiber modification on interfacial adhesion and mechanical properties of pineapple leaf fiber-epoxy composites

2008 ◽  
Vol 110 (1) ◽  
pp. 433-443 ◽  
Author(s):  
N. Lopattananon ◽  
Y. Payae ◽  
M. Seadan
2021 ◽  
Vol 106 ◽  
pp. 68-77
Author(s):  
Mohit Mittal ◽  
Rajiv Chaudhary

The behavior of a composite material under mechanical loading condition is significantly influenced by the geometrical dimensions (length and diameter) and the total content of reinforcing fiber. Therefore, this research work focused the effect of fiber length and content on the mechanical behavior of pineapple leaf fiber (PALF) reinforced-epoxy composites. In this regard, the total of four composite samples for each fiber length (10, 15, 20, and 25 mm) and content (17, 23, 34, and 43 vol.%) were developed using a hand lay-up molding technique and characterized for mechanical properties according to ASTM standards. The tensile and flexural strength of a composite was increased with the increase of PALF length and content up to 15 mm and 34 vol.% respectively. However, the composite of 25 mm fiber length with 43% fiber volume content exhibits the maximum impact strength.


2014 ◽  
Vol 484-485 ◽  
pp. 70-74
Author(s):  
Yu Ling Zhao ◽  
Zhuo Zhang

This paper analyzes several existing pineapple leaf fiber degumming methods and their advantages and disadvantages and describes its relationship with the degumming from the structure characteristics and chemical properties of pineapple leaf fiber. The author puts forward the pineapple leaf fiber degumming technology should be to "high-quality, efficient, low consumption, low pollution" direction of development, and put forward a new method of degumming. By means of scanning electron microscope, infrared spectroscopy, mechanical properties, thermal gravimetric analysis, differential scanning calorimetry and other means, to study the structure, mechanical properties and thermal properties of pineapple leaf fiber biochemical degumming treatment. The results show that: biochemical degumming can take off the original fiber, fiber surface glue residue, single fiber are glial exist, but the fiber separation in good condition, the fiber surface is smooth; hemicellulose degradation in biochemical degumming process, but did not completely removed; no effect on biochemical degumming of pineapple leaf fiber structure has good effect, degumming the treated fiber; degumming relative strength; fiber still has relatively high heat resistance.


2017 ◽  
Vol 57 ◽  
pp. 94-100 ◽  
Author(s):  
Nuttapong Hariwongsanupab ◽  
Sombat Thanawan ◽  
Taweechai Amornsakchai ◽  
Marie-France Vallat ◽  
Karine Mougin

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3498 ◽  
Author(s):  
Kaiyue Zhao ◽  
Shanbin Xue ◽  
Peng Zhang ◽  
Yupeng Tian ◽  
Peibing Li

Recently, there is ongoing interest in the use of natural plant fibers as alternatives for conventional reinforcements in cementitious composites. The use of natural plant fibers makes engineering work more sustainable, since they are renewable, biodegradable, energy-efficient, and non-toxic raw materials. In this contribution, a comprehensive experimental program was undertaken to determine the influence of pineapple leaf fiber and ramie fiber on the mechanical properties and mass transport of cement-based composites. The compressive strength, tensile strength, modulus of elasticity, modulus of rupture, fracture energy, flexural toughness, coefficient of capillary water absorption, and chloride diffusion were measured. Natural plant fiber-reinforced cement-based composites (NPFRCCs) containing pineapple leaf fiber and ramie fiber, as compared to the plain control, exhibited a slight reduction in compressive strength and a considerable improvement in tensile strength, modulus of elasticity, modulus of rupture, and flexural toughness; the enhancement was remarkable with a higher fiber content. The coefficient of capillary absorption and chloride diffusion of NPFRCCs were significantly larger than the plain control, and the difference was evident with the increase in fiber content. The present study suggests that the specimen with 2% pineapple leaf fiber content can be used in normal environments due to its superior mechanical properties. However, one should be careful when using the material in marine environments.


2020 ◽  
Vol 41 (4) ◽  
pp. 1255-1264 ◽  
Author(s):  
Ng Lin Feng ◽  
Sivakumar Dhar Malingam ◽  
Chen Wei Ping ◽  
Nadlene Razali

2019 ◽  
Vol 54 (7) ◽  
pp. 937-946 ◽  
Author(s):  
F Agrebi ◽  
H Hammami ◽  
M Asim ◽  
M Jawaid ◽  
A Kallel

This work deals with the dielectric properties of silane treated pineapple leaf fiber and kenaf fiber reinforced phenolic hybrid composites. The aim of the present paper is to investigate the effect of silane treatment on the pineapple leaf fiber–kenaf fiber/matrix interfacial adhesion using the dielectric relaxation spectroscopy in the frequency range from 0.1 Hz to 1 MHz and temperature range from 50 to 180℃. Our hybrid composites were fabricated by hand lay-up method at 50% total fiber loading. All the results obtained were discussed in terms of dynamic molecular and interfacial process. Two interfacial polarizations identified as the Maxwell–Wagner–Sillars effect are observed. We note that silane treatment improved the interfacial adhesion between pineapple leaf fiber/kenaf fiber and phenolic resin and it will help to develop high performance kenaf fiber/pineapple leaf fiber reinforced polymer composites for industrial applications. In fact, as known, the silane treatment developed hydrophobic nature in pineapple leaf fiber and kenaf fiber which is very positive for fiber/matrix compatibility.


Sign in / Sign up

Export Citation Format

Share Document