Effect of polyurethane molecular weight on the properties of polyurethane-poly(butyl methacrylate) hybrid latex prepared by miniemulsion polymerization

2011 ◽  
pp. n/a-n/a ◽  
Author(s):  
Cun Tian ◽  
Qing Zhou ◽  
Li Cao ◽  
Zhi-qiang Su ◽  
Xiao-nong Chen
2003 ◽  
Vol 774 ◽  
Author(s):  
Lucy Vojtova ◽  
Nicholas J. Turro ◽  
Jeffrey T. Koberstein

AbstractSynthesis of α,ω-allyl-terminated telechelic macromonomers based on poly(tert-butyl methacrylate) (poly(t-BMA)) and poly(methacrylic acid) (poly(MAA)) was studied with the aim of preparing end-linked gels and hydrogels. Low molecular weight α-allyl-terminated poly(t-BMA) macromonomers with narrow polydispersities (Mw/Mn = 1.16) were synthesized via controlled atom transfer radical polymerization (ATRP) using a Cu(I)Br/N,N,N',N',N',N'-hexamethyltriethylenetetraamine catalyst system in conjunction with an allyl-2-bromoisobutyrate as the functional initiator. The polymerizations exhibited a linear increase of molecular weight in direct proportion to the monomer conversion and first-order kinetics with respect to monomer concentration. No significant difference was found between using polar or non-polar solvents (tetrahydrofuran or benzene, respectively). Optimization of reaction conditions to obtain the highest degree of active terminal bromine is discussed. Quenching the ATRP reaction with allyltributyltin yielded α,ω-allyl-terminated poly(t-BMA) macromonomers by replacing the terminal bromine with ω-allyl functional group. Poly(MAA) macromonomers were prepared by deprotection of the tert-butyl group from α,ω-allyl-terminated poly(t-BMA) macromonomers using concentrated trifluoroacetic acid at room temperature. Successful synthetic steps were confirmed by 1H NMR, FT-IR and MALDI-TOF MS analyses. The α,ω-allyl-terminated macromonomers were proven to be candidates for further polymerization by forming end-linked, non-soluble gels.


2021 ◽  
Author(s):  
Baranitharan Sanmuga Sundaram

Optimal control policies are determined for the free radical polymerization of three different polymerization processes, in a non-isothermal batch reactor as follows: (1) bulk polymerization of n-butyl methacrylate; (2) solution polymerization of methyl methacrylate with monofunctional initiator; (3) solution polymerization of methyl methacrylate with bifunctional initiator. Four different optimal control objectives are realized for the above three processes. The objectives are: (i) maximization of monomer conversion in a specified operation time, (ii) minimization of operation time for a specified, final monomer conversation, (iii) maximization of monomer conversion for a specified, final number average polymer molecular weight, and (iv) maximization of monomer conversion for a specified, final weight average polymer molecular weight. The realization of these objectives is expected to be very useful for the batch production of polymers. To realize the above four different optimal control objectives, a genetic algorithms-based optimal control method is applied, and the temperature of heat exchange fluid inside reactor jacket is used as a control function. Necessary equations are provided in the above three processes to suitably transform the process model in the range of a specified variable other than time, and to evaluate the elements of Jacobian to help in the accurate solution of the process model. The results of this optimal control application reveal considerable improvements in the performance of the batch polymerization processes.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 591 ◽  
Author(s):  
Monika Zygo ◽  
Miroslav Mrlik ◽  
Marketa Ilcikova ◽  
Martina Hrabalikova ◽  
Josef Osicka ◽  
...  

This study reports the utilization of controlled radical polymerization as a tool for controlling the stimuli-responsive capabilities of graphene oxide (GO) based hybrid systems. Various polymer brushes with controlled molecular weight and narrow molecular weight distribution were grafted from the GO surface by surface-initiated atom transfer radical polymerization (SI-ATRP). The modification of GO with poly(n-butyl methacrylate) (PBMA), poly(glycidyl methacrylate) (PGMA), poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) and poly(methyl methacrylate) (PMMA) was confirmed by thermogravimetric analysis (TGA) coupled with online Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Various grafting densities of GO-based materials were investigated, and conductivity was elucidated using a four-point probe method. Raman shift and XPS were used to confirm the reduction of surface properties of the GO particles during SI-ATRP. The contact angle measurements indicated the changes in the compatibility of GOs with silicone oil, depending on the structure of the grafted polymer chains. The compatibility of the GOs with poly(dimethylsiloxane) was also investigated using steady shear rheology. The tunability of the electrorheological, as well as the photo-actuation capability, was investigated. It was shown that in addition to the modification of conductivity, the dipole moment of the pendant groups of the grafted polymer chains also plays an important role in the electrorheological (ER) performance. The compatibility of the particles with the polymer matrix, and thus proper particles dispersibility, is the most important factor for the photo-actuation efficiency. The plasticizing effect of the GO-polymer hybrid filler also has a crucial impact on the matrix stiffness and thus the ability to reversibly respond to the external light stimulation.


2014 ◽  
Vol 343 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Claudia A. Capeletto ◽  
Marcel R. da Silva ◽  
Claudia Sayer ◽  
Pedro H. H. de Araújo

2014 ◽  
Vol 5 (11) ◽  
pp. 3608-3616 ◽  
Author(s):  
A. B. Dwyer ◽  
P. Chambon ◽  
A. Town ◽  
T. He ◽  
A. Owen ◽  
...  

Anhydrous methanol, a traditional precipitant for poly(n-butyl methacrylate), has been shown to be an excellent synthesis solvent using ATRP, generating high molecular weights and low dispersities (up to 76 000 g mol−1 and as low as 1.02).


2007 ◽  
Vol 45 (22) ◽  
pp. 5067-5075 ◽  
Author(s):  
Tian-Ying Guo ◽  
Donglin Tang ◽  
Moudao Song ◽  
Banghua Zhang

2017 ◽  
Vol 8 (10) ◽  
pp. 1628-1635 ◽  
Author(s):  
Nicholas Ballard ◽  
Miren Aguirre ◽  
Alexandre Simula ◽  
Jose R. Leiza ◽  
Steven van Es ◽  
...  

The synthesis of poly(n-butyl methacrylate) by nitroxide mediated miniemulsion polymerization is described using the alkoxyamine 3-(((2-cyanopropan-2-yl)oxy)(cyclohexyl)amino)-2,2-dimethyl-3-phenylpropanenitrile.


Sign in / Sign up

Export Citation Format

Share Document