Foam injection molding of poly(lactic) acid: Effect of back pressure on morphology and mechanical properties

2015 ◽  
Vol 132 (48) ◽  
pp. n/a-n/a ◽  
Author(s):  
Valentina Volpe ◽  
Roberto Pantani
2017 ◽  
Vol 737 ◽  
pp. 269-274
Author(s):  
Sirirat Wacharawichanant ◽  
Chaninthon Ounyai ◽  
Ployvaree Rassamee

The effects of four types of organoclay on morphology and mechanical properties of poly(lactic acid) (PLA)/propylene-ethylene copolymer (PEC) blends were investigated. The ratio of PLA and PEC was 80/20 by weight and the organoclay content was 5 phr. The morphology analysis showed that the addition of all oganocaly types could improve the miscibility of PLA and PEC blends due to the decreased of the domain sizes of PEC dispersed phase in the polymer matrix. The tensile properties showed Young’s modulus of the PLA/PEC blends was improved after adding clay treated surface with 25-30 wt% trimethyl stearyl ammonium.


2018 ◽  
Vol 916 ◽  
pp. 19-23 ◽  
Author(s):  
Sirirat Wacharawichanant ◽  
Nisarat Wimonsupakit ◽  
Sasithorn Kuhaudomlap

The objective of this study is to fabricate the polyoxymethylene (POM)/microcrystalline cellulose (MCC) and poly(lactic acid) (PLA)/MCC composites, and to compare the effect of MCC on the morphology and mechanical properties of POM and PLA. The polymer composites were prepared by melt mixing in an internal mixer and molded by compression molding. The MCC concentrations were 1, 3, 5, 7, 10, 15 and 10% by weight. From scanning electron microscopy study observes the fracture surface of POM and PLA composites is much rough and the roughness increases with increasing MCC content. This observation indicates MCC induces the ductile fracture characteristic of POM and PLA. The addition of MCC can improve the impact strength of PLA composite and improve Young’s modulus of both POM and PLA composites. While the tensile strength and strain at break decrease after adding MCC. In summary, MCC can enhance the morphology and mechanical properties of PLA composites is better than POM composites.


2016 ◽  
Vol 835 ◽  
pp. 284-288 ◽  
Author(s):  
Sirirat Wacharawichanant ◽  
Chawisa Wisuttrakarn ◽  
Kasana Chomphunoi

The effects of the montmorillonite clay surface modified with 25-30 wt% of methyl dihydroxyethyl hydrogenated tallow ammonium (Clay-MHA) on morphology and mechanical properties of poly(lactic acid) (PLA)/acrylonitrile-butadiene rubber copolymer (NBR)/Clay-MHA composites were investigated. The composites of blends of PLA/NBR with Clay-MHA were prepared by melt mixing in an internal mixer and molded by compression molding. The ratio of PLA and NBR was 80/20 by weight and the Clay-MHA content was 1, 3, 5 and 7 phr. The results showed Young’s modulus and stress at break of the composites increased with increasing Clay-MHA content. While the tensile strength and strain at break of the composites decreased with increasing Clay-MHA content. Scanning electron microscopy analysis showed that the addition of Clay-MHA could improve the miscibility of PLA and NBR to be homogeneous blends and the pore in polymer blends was disappeared.


2014 ◽  
Vol 56 ◽  
pp. 57-64 ◽  
Author(s):  
Suchalinee Mathurosemontri ◽  
Putinun Auwongsuwan ◽  
Satoshi Nagai ◽  
Hiroyuki Hamada

Sign in / Sign up

Export Citation Format

Share Document