scholarly journals Thermo‐oxidative aging of high‐density polyethylene reinforced with multiwalled carbon nanotubes

2021 ◽  
Vol 138 (26) ◽  
pp. 50609
Author(s):  
Dan Åkesson ◽  
Sunil Kumar Lindström Ramamoorthy ◽  
Martin Bohlén ◽  
Ville‐Viktor Skrifvars ◽  
Sofie Svensson ◽  
...  
2013 ◽  
Vol 652-654 ◽  
pp. 15-24 ◽  
Author(s):  
Xia Ran Miao ◽  
Yuan Jiang Qi ◽  
Xiao Yun Li ◽  
Yu Zhu Wang ◽  
Xiao Long Li ◽  
...  

The high density polyethylene (HDPE) nanocomposites were prepared by melt mixing HDPE with multi-wall carbon nanotubes (MWCNTs). In this work, the morphological, nucleation, crystallization and mechanical properties of the HDPE nanocomposites were studied by scanning electron microscopy, different scanning calorimetry, small-angle X-ray scattering and tensile testing. It was found that the tensile strength and Young’s modulus is increased by 42.4% and 116.5% at 3.wt% MWCNT loading compared to the pure HDPE. According to SEM results combined with SAXS, well-defined nanohybird shish-kebab (NHSK) entities exist in the composites, and in the shish-kebab structures fibrillous carbon nanotubes (MWCNTs) act as shish while HDPE lamellae act as kebab. The crystallization behavior, probed by DSC, suggests that MWCNTs have strong nucleation ability and shear stress plays an important role in polymer crystallization process. The mechanical properties demonstrated that the formation of the Shish-kebab structures improved the interfacial adhesion and brought obvious mechanical enhancement for the HDPE/MWCNTs nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document