Influence of starch nanocrystals on sisal fiber/starch composites compatibilized by glutaraldehyde

2021 ◽  
pp. 51587
Author(s):  
Yao Chang ◽  
Jingqi Luo ◽  
Huihuang Ma ◽  
Xiaodong Zhou
2019 ◽  
Vol 35 (4) ◽  
pp. 485-496
Author(s):  
S. RAJKUMAR ◽  
◽  
R. JOSEPH BENSINGH ◽  
M. ABDUL KADER ◽  
SANJAY K NAYAK ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1124
Author(s):  
Zhifang Liang ◽  
Hongwu Wu ◽  
Ruipu Liu ◽  
Caiquan Wu

Green biodegradable plastics have come into focus as an alternative to restricted plastic products. In this paper, continuous long sisal fiber (SF)/polylactic acid (PLA) premixes were prepared by an extrusion-rolling blending process, and then unidirectional continuous long sisal fiber-reinforced PLA composites (LSFCs) were prepared by compression molding to explore the effect of long fiber on the mechanical properties of sisal fiber-reinforced composites. As a comparison, random short sisal fiber-reinforced PLA composites (SSFCs) were prepared by open milling and molding. The experimental results show that continuous long sisal fiber/PLA premixes could be successfully obtained from this pre-blending process. It was found that the presence of long sisal fibers could greatly improve the tensile strength of LSFC material along the fiber extension direction and slightly increase its tensile elongation. Continuous long fibers in LSFCs could greatly participate in supporting the load applied to the composite material. However, when comparing the mechanical properties of the two composite materials, the poor compatibility between the fiber and the matrix made fiber’s reinforcement effect not well reflected in SSFCs. Similarly, the flexural performance and impact performance of LSFCs had been improved considerably versus SSFCs.


2020 ◽  
Author(s):  
V. Vijayan ◽  
T. Sathish ◽  
R. Saravanan ◽  
I. J. Isaac Premkumar ◽  
Sanjeevi Basker ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document