scholarly journals Strength characteristics of banana and sisal fiber reinforced composites

2021 ◽  
Vol 1055 (1) ◽  
pp. 012024
Author(s):  
S Vidya Bharathi ◽  
S Vinodhkumar ◽  
M.M Saravanan

Sisal fiber reinforced composites are being replaced with manmade composites as these materials are difficult to manufacture and non biodegradable. On the other hand, the natural fiber reinforced composites such as sisal fiber reinforced composites shows less strength compared to manmade composites. The objective of the present work is to explore the mechanical properties of sisal fiber composites and hybrid sisal composites using analytical and experimental methods. The sisal composites and hybrid sisal composites are prepared by using hand layup techniques. The hybrid composites are prepared by reinforcing nano carbon powder and sisal fibers in a polymer matrix with the weight fraction of 9% of carbon powder and 50% of sisal fiber. The elastic modulus of polymer matrix with carbon powder reinforcement and polymer matrix, carbon powder and sisal fiber reinforced composites are identified by conducting suitable experiments. Later by using the finite element method, the fracture behavior of sisal fiber composites and hybrid composites are estimated. The energy released (ER) and energy required to create the surface (ES) are estimated to identify the critical crack length of the respective material. The present work is used for the design of sisal fiber composites with respect to young’s modulus and fracture response.


The objective of this study is to investigate the fatigue behavior of sisal fiber reinforced with carbon nanotubes. The hand lay-up technique is used to prepare the composite material samples. The fatigue response of pure polymer matrix, composite material which is prepared by reinforcing a sisal fiber reinforced with a polymer matrix was studied. The effectiveness of nano reinforcement of fatigue response is identified from experiments. Later, the fatigue response of sisal and nano particle reinforced sisal fiber composites (hybrid composite) is identified with irregularities by using finite element based software ANSYS. The elastic properties of sisal fiber reinforced composite and carbon nanotube reinforced composite is estimated by using the principles of Micromechanics and Macro-mechanics. The failure mechanism of polymer, conventional sisal fiber composites and nano filled sisal fiber reinforced composites are identified. The effect of the shape of the irregularities on the fatigue response is also identified from ANSYS software. From the present work, it is observed that, the reinforcement of nano reinforcement has considerable influence on the fatigue response of the resulting composite.


2008 ◽  
Vol 15 (6) ◽  
pp. 629-650 ◽  
Author(s):  
P. A. Sreekumar ◽  
Redouan Saiah ◽  
Jean Marc Saiter ◽  
Nathalie Leblanc ◽  
Kuruvilla Joseph ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
pp. 295-300 ◽  
Author(s):  
A. Francis ◽  
S. Rajaram ◽  
A. Mohanakrishnan ◽  
B. Ashok

AbstractThe composite materials plays a vital role in increase the strength and weight reduction purpose. The natural fibers increase the additional strength to the composites. This paper is related to the mechanical properties of the sisal fiber reinforced composites and it is compared with the another preparation of sisal fiber reinforced composite. The graphs shows the comparison about the mechanical properties on the fiber reinforced composites. The strength can be improved by using some melted polypropylene to increase the bonding between the matrix and the fiber. The sample material is immersed in water for twenty four hours and at the same time the properties also measured by using various testing methods. The final comparison indicates the better process for the preparation of the composite.


Sign in / Sign up

Export Citation Format

Share Document