The potential of temporary shelters to increase survival of the endangered Mexican axolotl

Author(s):  
Alejandra G. Ramos ◽  
Horacio Mena‐González ◽  
Luis Zambrano
Keyword(s):  
Author(s):  
Larry F. Lemanski ◽  
Eldridge M. Bertke ◽  
J. T. Justus

A recessive mutation has been recently described in the Mexican Axolotl, Ambystoma mexicanum; in which the heart forms structurally, but does not contract (Humphrey, 1968. Anat. Rec. 160:475). In this study, the fine structure of myocardial cells from normal (+/+; +/c) and cardiac lethal mutant (c/c) embryos at Harrison's stage 40 was compared. The hearts were fixed in a 0.1 M phosphate buffered formaldehyde-glutaraldehyde-picric acid-styphnic acid mixture and were post fixed in 0.1 M s-collidine buffered 1% osmium tetroxide. A detailed study of heart development in normal and mutant embryos from stages 25-46 will be described elsewhere.


Author(s):  
Ezzatollah Keyhani ◽  
Larry F. Lemanski ◽  
Sharon L. Lemanski

Energy for sperm motility is provided by both glycolytic and respiratory pathways. Mitochondria are involved in the latter pathway and conserve energy of substrate oxidation by coupling to phosphorylation. During spermatogenesis, the mitochondria undergo extensive transformation which in many species leads to the formation of a nebemkem. The nebemkem subsequently forms into a helix around the axial filament complex in the middle piece of spermatozoa.Immature spermatozoa of axolotls contain numerous small spherical mitochondria which are randomly distributed throughout the cytoplasm (Fig. 1). As maturation progresses, the mitochondria appear to migrate to the middle piece region where they become tightly packed to form a crystalline-like sheath. The cytoplasm in this region is no longer abundant (Fig. 2) and the plasma membrane is now closely apposed to the outside of the mitochondrial layer.


BMC Genomics ◽  
2008 ◽  
Vol 9 (1) ◽  
pp. 78 ◽  
Author(s):  
Robert B Page ◽  
Stephen R Voss ◽  
Amy K Samuels ◽  
Jeramiah J Smith ◽  
Srikrishna Putta ◽  
...  

2007 ◽  
Vol 306 (1) ◽  
pp. 346-347
Author(s):  
Elena Rueda-de-Leon ◽  
Gagani Athauda ◽  
Chi Zhang ◽  
Jennifer A. Maier ◽  
Pingping Jia ◽  
...  
Keyword(s):  

2009 ◽  
Vol 142 (12) ◽  
pp. 2881-2885 ◽  
Author(s):  
Victoria Contreras ◽  
Enrique Martínez-Meyer ◽  
Elsa Valiente ◽  
Luis Zambrano

2021 ◽  
Vol 118 (17) ◽  
pp. e2014719118
Author(s):  
Kathryn M. Everson ◽  
Levi N. Gray ◽  
Angela G. Jones ◽  
Nicolette M. Lawrence ◽  
Mary E. Foley ◽  
...  

The North American tiger salamander species complex, including its best-known species, the Mexican axolotl, has long been a source of biological fascination. The complex exhibits a wide range of variation in developmental life history strategies, including populations and individuals that undergo metamorphosis; those able to forego metamorphosis and retain a larval, aquatic lifestyle (i.e., paedomorphosis); and those that do both. The evolution of a paedomorphic life history state is thought to lead to increased population genetic differentiation and ultimately reproductive isolation and speciation, but the degree to which it has shaped population- and species-level divergence is poorly understood. Using a large multilocus dataset from hundreds of samples across North America, we identified genetic clusters across the geographic range of the tiger salamander complex. These clusters often contain a mixture of paedomorphic and metamorphic taxa, indicating that geographic isolation has played a larger role in lineage divergence than paedomorphosis in this system. This conclusion is bolstered by geography-informed analyses indicating no effect of life history strategy on population genetic differentiation and by model-based population genetic analyses demonstrating gene flow between adjacent metamorphic and paedomorphic populations. This fine-scale genetic perspective on life history variation establishes a framework for understanding how plasticity, local adaptation, and gene flow contribute to lineage divergence. Many members of the tiger salamander complex are endangered, and the Mexican axolotl is an important model system in regenerative and biomedical research. Our results chart a course for more informed use of these taxa in experimental, ecological, and conservation research.


Sign in / Sign up

Export Citation Format

Share Document