scholarly journals Synovial fluid mesenchymal stem cells in health and early osteoarthritis: Detection and functional evaluation at the single-cell level

2008 ◽  
Vol 58 (6) ◽  
pp. 1731-1740 ◽  
Author(s):  
Elena A. Jones ◽  
Aileen Crawford ◽  
Anne English ◽  
Karen Henshaw ◽  
Jenifer Mundy ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jay T. Myers ◽  
Deborah S. Barkauskas ◽  
Alex Y. Huang

Human mesenchymal stem cells (hMSCs) have gained intense research interest due to their immune-modulatory, tissue differentiating, and homing properties to sites of inflammation. Despite evidence demonstrating the biodistribution of infused hMSCs in target organs using static fluorescence imaging or whole-body imaging techniques, surprisingly little is known about how hMSCs behave dynamically within host tissues on a single-cell levelin vivo. Here, we infused fluorescently labeled clinical-grade hMSCs into immune-competent mice in which neutrophils and monocytes express a second fluorescent marker under the lysozyme M (LysM) promoter. Using intravital two-photon microscopy (TPM), we were able for the first time to capture dynamic interactions between hMSCs and LysM+granulocytes in the calvarium bone marrow of recipient mice during systemic LPS challenge in real time. Interestingly, many of the infused hMSCs remained intact despite repeated cellular contacts with host neutrophils. However, we were able to observe the destruction and subsequent phagocytosis of some hMSCs by surrounding granulocytes. Thus, our imaging platform provides opportunities to gain insight into the biology and therapeutic mechanisms of hMSCsin vivoat a single-cell level within live hosts.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e22158-e22158
Author(s):  
Alex Yee-Chen Huang ◽  
Jay T. Myers ◽  
Deborah Sim Barkauskas

e22158 Background: Human mesenchymal stem cells (hMSCs) have gained intense interest due to their immune-modulatory, tissue differentiating and homing properties to sites of inflammation and tumor microenvironment, as evidenced by more than 200 ongoing clinical trials using hMSCs in a variety of clinical settings. Despite evidence demonstrating the bio-distribution of infused hMSCs in target organs using static fluorescence imaging or whole-body imaging techniques, there is controversy regarding how hMSCs exert their biological effects, and very little is known about how they behave dynamically within host tissues on a single-cell level in vivo. Methods: We infused fluorescently labeled clinical-grade hMSCs into immune-competent mice in which neutrophils and monocytes express a second fluorescent marker under the Lysozyme M (LysM) promoter. The recipient mice were then subjected to serial 4-D (xyzt) imaging of the bone marrow cavity with intravital two-photon microscopy (TPM) during acute systemic Lipopolysaccharide (LPS) challenges to observe changes in MSC and neutrophil migration behavior. Results: We were able, for the first time, to capture dynamic interactions between and migration pattern of hMSCs and LysM+granulocytes in the bone marrow of live mice during systemic LPS challenge. Contrary to some published reports, many of the infused hMSCs remained intact despite repeated cellular contacts with host neutrophils. However, we also observed the destruction and subsequent phagocytosis of some hMSCs by surrounding granulocytes. Conclusions: Our imaging platform provides opportunities to gain insight into the biology and therapeutic mechanisms of hMSCs in vivo at a single-cell level within live hosts.


2007 ◽  
Vol 210 (5) ◽  
pp. 592-599 ◽  
Author(s):  
Matthias Schieker ◽  
Christoph Pautke ◽  
Florian Haasters ◽  
Jana Schieker ◽  
Denitsa Docheva ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min-Seok Oh ◽  
Seul-Gi Lee ◽  
Gwan-Ho Lee ◽  
C-Yoon Kim ◽  
Eun-Young Kim ◽  
...  

AbstractDespite the tremendous advancements made in cell tracking, in vivo imaging and volumetric analysis, it remains difficult to accurately quantify the number of infused cells following stem cell therapy, especially at the single cell level, mainly due to the sensitivity of cells. In this study, we demonstrate the utility of both liquid scintillator counter (LSC) and accelerator mass spectrometry (AMS) in investigating the distribution and quantification of radioisotope labeled adipocyte derived mesenchymal stem cells (AD-MSCs) at the single cell level after intravenous (IV) transplantation. We first show the incorporation of 14C-thymidine (5 nCi/ml, 24.2 ng/ml) into AD-MSCs without affecting key biological characteristics. These cells were then utilized to track and quantify the distribution of AD-MSCs delivered through the tail vein by AMS, revealing the number of AD-MSCs existing within different organs per mg and per organ at different time points. Notably, the results show that this highly sensitive approach can quantify one cell per mg which effectively means that AD-MSCs can be detected in various tissues at the single cell level. While the significance of these cells is yet to be elucidated, we show that it is possible to accurately depict the pattern of distribution and quantify AD-MSCs in living tissue. This approach can serve to incrementally build profiles of biodistribution for stem cells such as MSCs which is essential for both research and therapeutic purposes.


2021 ◽  
Vol 22 (11) ◽  
pp. 5988
Author(s):  
Hyun Kyu Kim ◽  
Tae Won Ha ◽  
Man Ryul Lee

Cells are the basic units of all organisms and are involved in all vital activities, such as proliferation, differentiation, senescence, and apoptosis. A human body consists of more than 30 trillion cells generated through repeated division and differentiation from a single-cell fertilized egg in a highly organized programmatic fashion. Since the recent formation of the Human Cell Atlas consortium, establishing the Human Cell Atlas at the single-cell level has been an ongoing activity with the goal of understanding the mechanisms underlying diseases and vital cellular activities at the level of the single cell. In particular, transcriptome analysis of embryonic stem cells at the single-cell level is of great importance, as these cells are responsible for determining cell fate. Here, we review single-cell analysis techniques that have been actively used in recent years, introduce the single-cell analysis studies currently in progress in pluripotent stem cells and reprogramming, and forecast future studies.


Stem Cells ◽  
2012 ◽  
Vol 30 (7) ◽  
pp. 1447-1454 ◽  
Author(s):  
Juan Du ◽  
Jinyong Wang ◽  
Guangyao Kong ◽  
Jing Jiang ◽  
Jingfang Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document