Linear Model-based Feedforward Control for Improving Tracking-performance of Linear Motors

2014 ◽  
Vol 16 (6) ◽  
pp. 1602-1611 ◽  
Author(s):  
Yan-Jang Li ◽  
Szu-Chi Tien
1998 ◽  
Vol 120 (1) ◽  
pp. 137-142 ◽  
Author(s):  
David M. Alter ◽  
Tsu-Chin Tsao

This paper investigates the use of optimal l1 and H∞ model reference optimal feedforward control to enhance the tracking performance of a linear motor drive. Experimental work is presented which studies the effects of signal preview, tracking constraint, and reference model choice on tracking performance. Suboptimal l1 control where the closed-loop system has a zero on the unit circle due to integral action in the feedback controller is given special attention, and is seen to give near optimal performance for the system under study here. For the specific trajectory employed here, the best performing feedforward controllers were experimentally seen to reduce by more than half the maximum and rms tracking errors of the H∞ optimal feedback closed-loop systems.


Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 128
Author(s):  
Zongxia Jiao ◽  
Yuan Cao ◽  
Liang Yan ◽  
Xinglu Li ◽  
Lu Zhang ◽  
...  

Linear motors have promising application to industrial manufacture because of their direct motion and thrust output. A permanent magnetic linear oscillating synchronous motor (PMLOSM) provides reciprocating motion which can drive a piston pump directly having advantages of high frequency, high reliability, and easy commercial manufacture. Hence, researching the tracking performance of PMLOSM is of great importance to realizing its popularization and application. Traditional PI control cannot fulfill the requirement of high tracking precision, and PMLOSM performance has high phase lag because of high control stiffness. In this paper, an advancing motivation feedforward control (AMFC), which is a combination of advancing motivation signal and PI control signal, is proposed to obtain high tracking precision of PMLOSM. The PMLOSM inserted with AMFC can provide accurate trajectory tracking at a high frequency. Compared with single PI control, AMFC can reduce the phase lag from −18 to −2.7 degrees, which shows great promotion of the tracking precision of PMLOSM. In addition, AMFC will promote the application of PMLOSM to other working conditions needing high frequency reciprocating tracking performance and give PMLOSM greater future prospects.


1992 ◽  
Vol 2 (3) ◽  
pp. 145-153 ◽  
Author(s):  
Suhas K. Mahuli ◽  
R. Russell Rhinehart ◽  
James B. Riggs

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 388
Author(s):  
Waheed Ur Rehman ◽  
Xinhua Wang ◽  
Yiqi Cheng ◽  
Yingchun Chen ◽  
Hasan Shahzad ◽  
...  

Research in the field of tribo-mechatronics has been gaining popularity in recent decades. The objective of the current research is to improve static/dynamics characteristics of hydrostatic bearings. Hydrostatic bearings always work in harsh environmental conditions that effect their performance, and which may even result in their failure. The current research proposes a mathematical model-based system for hydrostatic bearings that helps to improve its static/dynamic characteristics under varying conditions of performance-influencing variables such as temperature, spindle speed, external load, and clearance gap. To achieve these objectives, the capillary restrictors are replaced with servo valves, and a mathematical model is developed along with robust control design systems. The control system consists of feedforward and feedback control techniques that have not been applied before for hydrostatic bearings in the published literature. The feedforward control tries to remove a disturbance before it enters the system while feedback control achieves the objective of disturbance rejection and improves steady-state characteristics. The feedforward control is a trajectory-based controller and the feedback controller is a sliding mode controller with a PID sliding surface. The particle swarm optimization algorithm is used to tune the 6-dimensional vector of the tuning parameters with multi-objective performance criteria. Numerical investigations have been carried out to check the performance of the proposed system under varying conditions of viscosity, clearance gap, external load and the spindle speed. The comparison of our results with the published literature shows the effectiveness of the proposed system.


1999 ◽  
Vol 72 (10) ◽  
pp. 919-928 ◽  
Author(s):  
B. Kouvaritakis ◽  
M. Cannon ◽  
J. A. Rossiter

2016 ◽  
Vol 7 (3) ◽  
pp. 415
Author(s):  
Edilson Romais Schmildt ◽  
Omar Schmildt ◽  
Rodrigo Sobreira Alexandre ◽  
Adriano Alves Fernandes ◽  
Marcio Paulo Czepak

The aim of this study was to evaluate the efficiency of the adjustment of mathematical models for determining Bauhinia monandra leaf area using the length and/or width of the leaves as independent variables. Leaves from plants with three years were used to the estimative of equations in linear, quadratic and potential models. The validation from the estimated leaf area as a function of the observed leaf area showed that the linear model based on the product of length and width of the largest leaf surface is the model that best fits. However, the leaf area determination can be represented by using only the length or width of the leaves with little loss of accuracy. A representation that better estimates Bauhinia monandra leaf area with easy application is the potential model in which xi represents the length of one of the symmetrical leaf lobes.


Sign in / Sign up

Export Citation Format

Share Document