scholarly journals Model-Based Design Approach to Improve Performance Characteristics of Hydrostatic Bearing Using Multivariable Optimization

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 388
Author(s):  
Waheed Ur Rehman ◽  
Xinhua Wang ◽  
Yiqi Cheng ◽  
Yingchun Chen ◽  
Hasan Shahzad ◽  
...  

Research in the field of tribo-mechatronics has been gaining popularity in recent decades. The objective of the current research is to improve static/dynamics characteristics of hydrostatic bearings. Hydrostatic bearings always work in harsh environmental conditions that effect their performance, and which may even result in their failure. The current research proposes a mathematical model-based system for hydrostatic bearings that helps to improve its static/dynamic characteristics under varying conditions of performance-influencing variables such as temperature, spindle speed, external load, and clearance gap. To achieve these objectives, the capillary restrictors are replaced with servo valves, and a mathematical model is developed along with robust control design systems. The control system consists of feedforward and feedback control techniques that have not been applied before for hydrostatic bearings in the published literature. The feedforward control tries to remove a disturbance before it enters the system while feedback control achieves the objective of disturbance rejection and improves steady-state characteristics. The feedforward control is a trajectory-based controller and the feedback controller is a sliding mode controller with a PID sliding surface. The particle swarm optimization algorithm is used to tune the 6-dimensional vector of the tuning parameters with multi-objective performance criteria. Numerical investigations have been carried out to check the performance of the proposed system under varying conditions of viscosity, clearance gap, external load and the spindle speed. The comparison of our results with the published literature shows the effectiveness of the proposed system.

1994 ◽  
Vol 6 (3) ◽  
pp. 200-207
Author(s):  
Nobuyuki Kobayashi ◽  
◽  
Osamu Saito ◽  
Kenzo Nonami ◽  
Susumu Tohsya ◽  
...  

An attitude control algorithm for a free-flying robot by the cooperative control of feedforward control and feedback control is proposed. The motion of a manipulator on a space robot causes the attitude deviation of the robot’s main body because of dynamic interaction. The proposed cooperative control algorithm is composed of Disturbed-Torque Compensation control on the thrusters, as feedforward control, and sliding mode control on the reaction wheels, which is a known method of robust control, as feedback control. The proposed algorithm is verified by a one-degree-of-freedom model test. In addition, the robustness is also discussed.


2014 ◽  
Vol 24 (3) ◽  
pp. 299-319 ◽  
Author(s):  
Kamen Delchev ◽  
George Boiadjiev ◽  
Haruhisa Kawasaki ◽  
Tetsuya Mouri

Abstract This paper deals with the improvement of the stability of sampled-data (SD) feedback control for nonlinear multiple-input multiple-output time varying systems, such as robotic manipulators, by incorporating an off-line model based nonlinear iterative learning controller. The proposed scheme of nonlinear iterative learning control (NILC) with SD feedback is applicable to a large class of robots because the sampled-data feedback is required for model based feedback controllers, especially for robotic manipulators with complicated dynamics (6 or 7 DOF, or more), while the feedforward control from the off-line iterative learning controller should be assumed as a continuous one. The robustness and convergence of the proposed NILC law with SD feedback is proven, and the derived sufficient condition for convergence is the same as the condition for a NILC with a continuous feedback control input. With respect to the presented NILC algorithm applied to a virtual PUMA 560 robot, simulation results are presented in order to verify convergence and applicability of the proposed learning controller with SD feedback controller attached


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Haijun Ren ◽  
Hao Zhang ◽  
Guang Deng ◽  
Bin Hou

After exceeding rated power, variable speed variable pitch wind turbines need to keep output powers at rated value by adopting pitch angles. With the typical nonlinear characteristics of the wind turbines, it is difficult to control accurately by conventional linear controller. Though feedback control can realize the stability of the system, it is effective only when deviations are produced. As such, feedforward control can be applied to compensate the time-delay produced by feedback control. Accordingly, we propose a compound control strategy that combines feedback controller with feedforward controller in this paper. In feedback loop, we adopt fuzzy algorithm to adjust the parameters of PID controller. Furthermore, to overcome large variation of input wind speed, variable universe theory is proposed to optimize fuzzy algorithm. In feedforward loop, we propose feedback linearization to address nonlinear problem. Furthermore, sliding mode algorithm is supplied to improve the robustness of feedback linearization. Therefore, feedforward loop can efficiently compensate time-delay deficiency of wind turbine systems. Simulation results show that the proposed controller can enhance the control accuracy and robustness of the system.


2016 ◽  
Vol 310 (9) ◽  
pp. H1242-H1258 ◽  
Author(s):  
Christopher J. Arthurs ◽  
Kevin D. Lau ◽  
Kaleab N. Asrress ◽  
Simon R. Redwood ◽  
C. Alberto Figueroa

This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (05) ◽  
pp. 261-269
Author(s):  
Wei Ren ◽  
Brennan Dubord ◽  
Jason Johnson ◽  
Bruce Allison

Tight control of raw green liquor total titratable alkali (TTA) may be considered an important first step towards improving the overall economic performance of the causticizing process. Dissolving tank control is made difficult by the fact that the unknown smelt flow is highly variable and subject to runoff. High TTA variability negatively impacts operational costs through increased scaling in the dissolver and transfer lines, increased deadload in the liquor cycle, under- and over-liming, increased energy consumption, and increased maintenance. Current practice is to use feedback control to regulate the TTA to a target value through manipulation of weak wash flow while simultaneously keeping dissolver density within acceptable limits. Unfortunately, the amount of variability reduction that can be achieved by feedback control alone is fundamentally limited by the process dynamics. One way to improve upon the situation would be to measure the smelt flow and use it as a feedforward control variable. Direct measurement of smelt flow is not yet possible. The use of an indirect measurement, the dissolver vent stack temperature, is investigated in this paper as a surrogate feedforward variable for dissolving tank TTA control. Mill trials indicate that significant variability reduction in the raw green liquor TTA is possible and that the control improvements carry through to the downstream processes.


2021 ◽  
Vol 145 ◽  
pp. 110789
Author(s):  
Parthasakha Das ◽  
Samhita Das ◽  
Pritha Das ◽  
Fathalla A. Rihan ◽  
Muhammet Uzuntarla ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 363
Author(s):  
Chii-Dong Ho ◽  
Yih-Hang Chen ◽  
Chao-Min Chang ◽  
Hsuan Chang

For the sour water strippers in petroleum refinery plants, three prediction models were developed first, including the estimators of sour water feed concentrations using convenient online measurements, the minimum reboiler duty and the corresponding internal temperature at a specific location (Tstage,29). Feedforward control schemes were developed based on these prediction models. Four categories of control schemes, including feedforward, feedback, feedback with external reset, and feedforward-feedback, were proposed and evaluated by the rigorous dynamic simulation model of the sour water stripper for their dynamic responses to the sour water feed stream disturbances. The comparison of control performance, in terms of the settling time, integrated absolute error (IAE) of the NH3 concentration of the stripped sour water and IAE of the specific reboiler duty, reveals that FFT (feedforward control of Tstage,29) and FBA-DT3 (feedback control with 3 min concentration measurement delay) are the best control schemes. The second-best control scheme is FBAT (cascade feedback control of concentration with temperature).


Sign in / Sign up

Export Citation Format

Share Document