scholarly journals Orbital parameters of the high-mass X-ray binary 4U 2206+54

2014 ◽  
Vol 335 (10) ◽  
pp. 1060-1063 ◽  
Author(s):  
K. A. Stoyanov ◽  
R. K. Zamanov ◽  
G. Y. Latev ◽  
A. Y. Abedin ◽  
N. A. Tomov
Keyword(s):  
X Ray ◽  
2019 ◽  
Vol 873 (1) ◽  
pp. 86 ◽  
Author(s):  
Aaron B. Pearlman ◽  
Joel B. Coley ◽  
Robin H. D. Corbet ◽  
Katja Pottschmidt

2021 ◽  
Vol 42 (2) ◽  
Author(s):  
Parisee Shirke ◽  
Suman Bala ◽  
Jayashree Roy ◽  
Dipankar Bhattacharya
Keyword(s):  
X Ray ◽  

2020 ◽  
Vol 500 (3) ◽  
pp. 2958-2968
Author(s):  
Grant Merz ◽  
Zach Meisel

ABSTRACT The thermal structure of accreting neutron stars is affected by the presence of urca nuclei in the neutron star crust. Nuclear isobars harbouring urca nuclides can be produced in the ashes of Type I X-ray bursts, but the details of their production have not yet been explored. Using the code MESA, we investigate urca nuclide production in a one-dimensional model of Type I X-ray bursts using astrophysical conditions thought to resemble the source GS 1826-24. We find that high-mass (A ≥ 55) urca nuclei are primarily produced late in the X-ray burst, during hydrogen-burning freeze-out that corresponds to the tail of the burst light curve. The ∼0.4–0.6 GK temperature relevant for the nucleosynthesis of these urca nuclides is much lower than the ∼1 GK temperature most relevant for X-ray burst light curve impacts by nuclear reaction rates involving high-mass nuclides. The latter temperature is often assumed for nuclear physics studies. Therefore, our findings alter the excitation energy range of interest in compound nuclei for nuclear physics studies of urca nuclide production. We demonstrate that for some cases this will need to be considered in planning for nuclear physics experiments. Additionally, we show that the lower temperature range for urca nuclide production explains why variations of some nuclear reaction rates in model calculations impacts the burst light curve but not local features of the burst ashes.


2012 ◽  
Vol 425 (1) ◽  
pp. 595-604 ◽  
Author(s):  
P. Reig ◽  
J. M. Torrejón ◽  
P. Blay
Keyword(s):  
X Ray ◽  
New Type ◽  

Author(s):  
G Sanjurjo-Ferrín ◽  
J M Torrejón ◽  
K Postnov ◽  
L Oskinova ◽  
J J Rodes-Roca ◽  
...  

Abstract Cen X-3 is a compact high mass X-ray binary likely powered by Roche lobe overflow. We present a phase-resolved X-ray spectral and timing analysis of two pointed XMM-Newton observations. The first one took place during a normal state of the source, when it has a luminosity LX ∼ 1036 erg s−1. This observation covered orbital phases φ = 0.00 − 0.37, i.e. the egress from the eclipse. The egress lightcurve is highly structured, showing distinctive intervals. We argue that different intervals correspond to the emergence of different emitting structures. The lightcurve analysis enables us to estimate the size of such structures around the compact star, the most conspicuous of which has a size ∼0.3R*, of the order of the Roche lobe radius. During the egress, the equivalent width of Fe emission lines, from highly ionized species, decreases as the X-ray continuum grows. On the other hand, the equivalent width of the Fe Kα line, from near neutral Fe, strengthens. This line is likely formed due to the X-ray illumination of the accretion stream. The second observation was taken when the source was 10 times X-ray brighter and covered the orbital phases φ = 0.36 − 0.80. The X-ray lightcurve in the high state shows dips. These dips are not caused by absorption but can be due to instabilities in the accretion stream. The typical dip duration, of about 1000 s, is much longer than the timescale attributed to the accretion of the clumpy stellar wind of the massive donor star, but is similar to the viscous timescale at the inner radius of the accretion disk.


New Astronomy ◽  
1999 ◽  
Vol 4 (4) ◽  
pp. 313-323 ◽  
Author(s):  
G.E. Brown ◽  
C.-H. Lee ◽  
Hans A. Bethe
Keyword(s):  
X Ray ◽  
Low Mass ◽  

2003 ◽  
Vol 214 ◽  
pp. 215-217
Author(s):  
Q. Z. Liu ◽  
X. D. Li ◽  
D. M. Wei

The relation between the spin period (Ps) and the orbital period (Po) in high-mass X-ray binaries (HMXBs) is investigated. In order for Be/X-ray binaries to locate above the critical line of observable X-ray emission due to accretion, it is necessary for an intermediate orbital eccentricity to be introduced. We suggest that some peculiar systems in the Po − Ps diagram are caused by their peculiar magnetic fields.


2016 ◽  
Vol 12 (S329) ◽  
pp. 355-358
Author(s):  
Peter Kretschmar ◽  
Silvia Martínez-Núñez ◽  
Enrico Bozzo ◽  
Lidia M. Oskinova ◽  
Joachim Puls ◽  
...  

AbstractStrong winds from massive stars are a topic of interest to a wide range of astrophysical fields. In High-Mass X-ray Binaries the presence of an accreting compact object on the one side allows to infer wind parameters from studies of the varying properties of the emitted X-rays; but on the other side the accretor’s gravity and ionizing radiation can strongly influence the wind flow. Based on a collaborative effort of astronomers both from the stellar wind and the X-ray community, this presentation attempts to review our current state of knowledge and indicate avenues for future progress.


Sign in / Sign up

Export Citation Format

Share Document