A study on adjustment factors for U-turns in left-turn lanes at signalized intersections

1995 ◽  
Vol 29 (2) ◽  
pp. 183-192 ◽  
Author(s):  
Shou-Min Tsao ◽  
Song-Wei Chu
Author(s):  
Shannon Warchol ◽  
Nagui Rouphail ◽  
Chris Vaughan ◽  
Brendan Kearns

This research collected and analyzed gap acceptance in North Carolina to develop a data-driven method for determining the need for considering additional signalization analysis at intersections with fewer than four legs. This method can be used for movements that merge with or cross two lanes of oncoming traffic. It is intended to provide guidance and support to traffic engineers in their decision-making process. Charts are provided to determine the expected 95th percentile queue lengths for left-turn, right-turn, and U-turn movements crossing or merging with two lanes of conflicting traffic. This situation is typically present along four-lane roadways where a one-way primary movement opposes either a minor road right-turn movement or a left-turn movement, or in the case of a median U-turn opening. Adjustment factors to the conflicting flowrate were developed to account for the presence of upstream signalized intersections. This method less frequently recommends further signal consideration when compared with the Manual on Uniform Traffic Control Devices peak hour warrant, but is similar to the delay-based level of service D/E threshold for two-way stop-controlled intersections in HCM6 Chapter 19.


Author(s):  
Pan Liu ◽  
Jian John Lu ◽  
Jingjing Fan ◽  
Juan C. Pernia ◽  
Gary Sokolow

In Florida, the increased use of restrictive medians and directional median openings has generated many U-turns at signalized intersections. There is no widely accepted procedure for estimating the effects of U-turning vehicles on signalized intersection capacity. In the 2000 edition of the Highway Capacity Manual, U-turns are treated as left turns for estimation of saturation flow rates. However, the operational effects of U-turns and left turns are different. This study analyzed the effects of U-turning vehicles on the left-turn saturation flow rate. Data were collected at three signalized intersections in the Tampa Bay area in Florida. In total, the study team recorded the queue discharge times for 260 queues, including 571 U-turning vehicles and 1,441 left-turning vehicles. On the basis of the data collected in the field, a regression model was developed to estimate the relationship between the average queue discharge time for each turning vehicle and the various percentages of U-turning vehicles in the left-turn traffic stream. Adjustment factors for various percentages of U-turning vehicles were also developed by using the regression model. The adjustment factors developed in this study can be directly used to estimate the capacity reduction due to the presence of various percentages of U-turning vehicles at a signalized intersection.


2020 ◽  
Vol 12 (11) ◽  
pp. 4485
Author(s):  
Abdelrahman Abuhijleh ◽  
Charitha Dias ◽  
Wael Alhajyaseen ◽  
Deepti Muley

The Saturation Flow Rate (SFR) is a primary measure that can be used when estimating intersection capacity. Further, the efficiency of signal control parameters also depends on the accuracy of assumed SFR values. Driver behavior, type of movement, vehicle type, intersection layout, and other factors may have a significant impact on the saturation flow rate. Thus, it is expected that driving environments that have heterogeneous driver populations with different driving habits and cultures may have different SFRs. In practice, the proposed SFRs based on US standards (Highway Capacity Manual, 2016) have been adopted in the State of Qatar without validation or calibration to consider the local road environment and the characteristics of the driving population. This study aims to empirically analyze the saturation flow rates for exclusive left-turn lanes and shared left- and U-turn lanes at two signalized intersections in Doha city, while considering the effects of heavy vehicles and U-turn maneuvers. Empirical observations revealed that the average base SFR, i.e., when the influences from heavy vehicles and U-turns were excluded, could vary approximately from 1800 vehicles per hour per lane (vphpl) to 2100 vphpl for exclusive left-turning lanes and approximately from 1800 vphpl to 1900 vphpl for shared left- and U-turning lanes. Furthermore, this study proposed different adjustment factors for heavy vehicle and U-turn percentages which can be applied in practice in designing signalized intersections, particularly in the State of Qatar.


Author(s):  
Zihang Wei ◽  
Yunlong Zhang ◽  
Xiaoyu Guo ◽  
Xin Zhang

Through movement capacity is an essential factor used to reflect intersection performance, especially for signalized intersections, where a large proportion of vehicle demand is making through movements. Generally, left-turn spillback is considered a key contributor to affect through movement capacity, and blockage to the left-turn bay is known to decrease left-turn capacity. Previous studies have focused primarily on estimating the through movement capacity under a lagging protected only left-turn (lagging POLT) signal setting, as a left-turn spillback is more likely to happen under such a condition. However, previous studies contained assumptions (e.g., omit spillback), or were dedicated to one specific signal setting. Therefore, in this study, through movement capacity models based on probabilistic modeling of spillback and blockage scenarios are established under four different signal settings (i.e., leading protected only left-turn [leading POLT], lagging left-turn, protected plus permitted left-turn, and permitted plus protected left-turn). Through microscopic simulations, the proposed models are validated, and compared with existing capacity models and the one in the Highway Capacity Manual (HCM). The results of the comparisons demonstrate that the proposed models achieved significant advantages over all the other models and obtained high accuracies in all signal settings. Each proposed model for a given signal setting maintains consistent accuracy across various left-turn bay lengths. The proposed models of this study have the potential to serve as useful tools, for practicing transportation engineers, when determining the appropriate length of a left-turn bay with the consideration of spillback and blockage, and the adequate cycle length with a given bay length.


Author(s):  
Andrew Raessler ◽  
Jidong J. Yang

A new methodology is proposed to establish practical guidelines for four incremental left-turn treatments: ( a) permissive single left-turn lane, ( b) protected–permissive single left-turn lane, ( c) protected dual left-turn lanes with equal lane use, and ( d) protected dual left-turn lanes with unequal lane use. Decision boundaries were derived from the equilibrium at which the delays of two incremental treatments were equal. The benefits and costs associated with different left-turn treatments—including safety impact and construction and maintenance costs—also were considered. These benefits and costs effectually shift the boundary curves for more realistic decision making.


Author(s):  
Daniel J. Cook

Along urban and suburban arterials, closely-spaced signalized intersections are commonly used to provide access to adjacent commercial developments. Often, these signalized intersections are designed to provide full access to developments on both sides of the arterial and permit through, left-turn, and right-turn movements from every intersection approach. Traffic signal timing is optimized to reduce vehicle delay or provide progression to vehicles on the arterial, or both. However, meeting both of these criteria can be cumbersome, if not impossible, under high-demand situations. This research proposes a new design that consolidates common movements at three consecutive signalized intersections into strategic fixed locations along the arterial. The consolidation of common movements allows the intersections to cycle between only two critical phases, which, in turn, promotes shorter cycle lengths, lower delay, and better progression. This research tested the consolidated intersection concept by modeling a real-world site in microsimulation software and obtaining values for delay and travel time for multiple vehicle paths along the corridor and adjacent commercial developments in both existing and proposed conditions. With the exception of unsignalized right turns at the periphery of the study area, all non-displaced routes showed a reduction in travel time and delay. Additional research is needed to understand how additional travel through the commercial developments adjacent to the arterial may effect travel time and delay. Other expected benefits of the proposed design include a major reduction in conflict points, shorter pedestrian crossing and wait times, and the opportunity to provide pedestrian refuge areas in the median.


2019 ◽  
Vol 145 (6) ◽  
pp. 04019020 ◽  
Author(s):  
Pan Liu ◽  
Jiaming Wu ◽  
Huaguo Zhou ◽  
Jie Bao ◽  
Zhao Yang

Sign in / Sign up

Export Citation Format

Share Document