Self-Diffusion of Gaseous Carbon Dioxide in the Critical Region

1976 ◽  
Vol 80 (2) ◽  
pp. 157-163 ◽  
Author(s):  
J. S. Duffield ◽  
M. J. Harris
1972 ◽  
Vol 50 (12) ◽  
pp. 1355-1362 ◽  
Author(s):  
L. Mannik ◽  
J. C. Stryland

The ν1 band of gaseous carbon dioxide has been studied in pressure-induced absorption at temperatures of ~ 190, ~ 300, and ~ 470 K, over a density range from 0.5 to 300 amagat, and with path lengths from 0.007 to 56 m. The observed temperature variation of the binary absorption coefficient can be satisfactorily accounted for only by adding a quadrupole–quadrupole interaction term to the usual Lennard–Jones model for the inter-molecular potential. The band profile is in agreement with the theory of quadrupole-induced absorption. There is some increase in the intensity of the band near the critical point due to the divergence of the correlation length. A very marked increase in the intensity is possibly prevented by the "cancellation effect".


2001 ◽  
Author(s):  
Y. H. Zheng ◽  
R. S. Amano

Abstract An efficient enhancement of the carbonation rate in the bottle filling stage can substantially increase the production in beverage industries. The bottle filling system currently used in most of the manufacturers can still be improved for a better performance of carbonation by designing the injection tube system. This paper reports on an experimental and numerical mass transfer modeling that can simulate the dissolution process of gaseous carbon dioxide into aqueous water in the bottle filler system. In order to establish the operating characteristics of the bottle filler system, an ordinary tap water and pure carbon dioxide were used as the liquid-gas system. The two-phase numerical modeling was developed that can serve as a framework for the continuous improvement of the design of the carbonation process in the bottle filler system. For an optimal design of CO2 injection tube and flow conditions, a computational fluid dynamics (CFD) approach is one of the most power tools. However, since only limited experimental data are available in the open literature to verify the computational results, an experiment study was performed to obtain measurements of CO2 level, temperature, and pressure during the carbonation process in the bottle filled with liquid. Both experimental and numerical studies of various flow condition and different sizes of injection tube are presented in this paper.


2004 ◽  
Vol 91 (2) ◽  
pp. 209-213 ◽  
Author(s):  
S. Furukawa ◽  
T. Watanabe ◽  
T. Tai ◽  
J. Hirata ◽  
N. Narisawa ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (5) ◽  
pp. 3581-3589 ◽  
Author(s):  
Surya Singh ◽  
Bedika Phukan ◽  
Chandan Mukherjee ◽  
Anil Verma

CO2, being a linear and centrosymmetric molecule, is very stable, and the electrochemical reduction of CO2 requires energy. However, the salen complexes are found to be very efficient to minimize overpotential as compared to their metal counterparts.


1970 ◽  
Vol 92 (3) ◽  
pp. 301-309 ◽  
Author(s):  
G. Angelino ◽  
E. Macchi

The computation of power cycles employing carbon dioxide as working fluid and extending down to the critical region requires the knowledge of the thermodynamic properties of CO2 within a wide range of pressures and temperatures. Available data are recognized to be insufficient or insufficiently accurate chiefly in the vicinity of the critical dome. Newly published density and specific heat measurements are employed to compute thermodynamic functions at temperatures between 0 and 50 deg C, where the need of better data is more urgent. Methods for the computation of thermal properties from density measurement in the low and in the high temperature range are presented and discussed. Results are reported of the computation of entropy and enthalpy of CO2 in the range 150–750 deg C and 40–600 atm. The probable precision of the tables is inferred from an error analysis based on the generation, by means of a computer program of a set of pseudoexperimental points which, treated as actual measurements, yield useful information about the accuracy of the calculation procedure.


Sign in / Sign up

Export Citation Format

Share Document