Salen ligand complexes as electrocatalysts for direct electrochemical reduction of gaseous carbon dioxide to value added products

RSC Advances ◽  
2015 ◽  
Vol 5 (5) ◽  
pp. 3581-3589 ◽  
Author(s):  
Surya Singh ◽  
Bedika Phukan ◽  
Chandan Mukherjee ◽  
Anil Verma

CO2, being a linear and centrosymmetric molecule, is very stable, and the electrochemical reduction of CO2 requires energy. However, the salen complexes are found to be very efficient to minimize overpotential as compared to their metal counterparts.

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6962
Author(s):  
Sulafa Abdalmageed Saadaldeen Mohammed ◽  
Wan Zaireen Nisa Yahya ◽  
Mohamad Azmi Bustam ◽  
Md Golam Kibria

The electrochemical reduction of carbon dioxide (CO2ER) is amongst one the most promising technologies to reduce greenhouse gas emissions since carbon dioxide (CO2) can be converted to value-added products. Moreover, the possibility of using a renewable source of energy makes this process environmentally compelling. CO2ER in ionic liquids (ILs) has recently attracted attention due to its unique properties in reducing overpotential and raising faradaic efficiency. The current literature on CO2ER mainly reports on the effect of structures, physical and chemical interactions, acidity, and the electrode–electrolyte interface region on the reaction mechanism. However, in this work, new insights are presented for the CO2ER reaction mechanism that are based on the molecular interactions of the ILs and their physicochemical properties. This new insight will open possibilities for the utilization of new types of ionic liquids. Additionally, the roles of anions, cations, and the electrodes in the CO2ER reactions are also reviewed.


Author(s):  
Hesamoddin Rabiee ◽  
Lei Ge ◽  
Xueqin Zhang ◽  
Shihu Hu ◽  
Mengran Li ◽  
...  

Electrochemical reduction of gaseous feeds such as CO2, CO, and N2 holds promise for sustainable energy and chemical production. Practical application of this technology is impeded by slow mass transport...


Author(s):  
Dui Ma ◽  
Ting Jin ◽  
Keyu Xie ◽  
Haitao Huang

Converting CO2 into value-added fuels or chemical feedstocks through electrochemical reduction is one of the several promising avenues to reduce atmospheric carbon dioxide levels and alleviate global warming. This approach...


2021 ◽  
Author(s):  
Samed Güner ◽  
Vanessa Wegat ◽  
André Pick ◽  
Volker Sieber

Realizing a sustainable future requires intensifying the waste stream conversion, such as converting the greenhouse gas carbon dioxide into value-added products. In this paper, we focus on utilizing formaldehyde as...


2018 ◽  
Vol 9 (11) ◽  
pp. 2952-2960 ◽  
Author(s):  
Eva M. Nichols ◽  
Jeffrey S. Derrick ◽  
Sepand K. Nistanaki ◽  
Peter T. Smith ◽  
Christopher J. Chang

The development of catalysts for electrochemical reduction of carbon dioxide offers an attractive approach to transforming this greenhouse gas into value-added carbon products with sustainable energy input.


Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 413 ◽  
Author(s):  
Silvia Mena ◽  
Iluminada Gallardo ◽  
Gonzalo Guirado

Carbon dioxide (CO2) is a known greenhouse gas, and is the most important contributor to global warming. Therefore, one of the main challenges is to either eliminate or reuse it through the synthesis of value-added products, such as carboxylated derivatives. One of the most promising approaches for activating, capturing, and valorizing CO2 is the use of electrochemical techniques. In the current manuscript, we described an electrocarboxylation route for synthesizing 4-cyanobenzoic acid by valorizing CO2 through the synergistic use of electrochemical techniques (“green technology”) and ionic liquids (ILs) (“green solvents”)—two of the major entries in the general green chemistry tool kit. Moreover, the use of silver cathodes and ILs enabled the electrochemical potential applied to be reduced by more than 0.4 V. The “green” synthesis of those derivatives would provide a suitable environmentally friendly process for the design of plasticizers based on phthalate derivatives.


2018 ◽  
Vol 31 (13) ◽  
pp. 1804257 ◽  
Author(s):  
Jingjie Wu ◽  
Tiva Sharifi ◽  
Ying Gao ◽  
Tianyu Zhang ◽  
Pulickel M. Ajayan

2020 ◽  
Vol 5 (2) ◽  
pp. 486-519 ◽  
Author(s):  
Vignesh Kumaravel ◽  
John Bartlett ◽  
Suresh C. Pillai

Sign in / Sign up

Export Citation Format

Share Document