Cell Separation in Aqueous Two-Phase Systems − Influence of Polymer Molecular Weight and Tie-Line Length on the Resolution of Five Model Cell Lines

2017 ◽  
Vol 13 (2) ◽  
pp. 1700250 ◽  
Author(s):  
Sarah Zimmermann ◽  
Sarah Gretzinger ◽  
Philipp K. Zimmermann ◽  
Are Bogsnes ◽  
Mattias Hansson ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Haihua Yuan ◽  
Yang Liu ◽  
Wanqian Wei ◽  
Yongjie Zhao

The phase separation behaviors of PEG1000/sodium citrate, PEG4000/sodium citrate, PEG1000/ammonium sulfate, and PEG4000/ammonium sulfate aqueous two-phase systems were investigated, respectively. There are two distinct situations for the phase separation rate in the investigated aqueous two-phase systems: one state is top-continuous phase with slow phase separation rate and strong bottom-continuous phase with fast phase separation rate and weak volume ratio dependence. The system properties such as density, viscosity, and interfacial tension between top and bottom phases which have effects on the phase separation rate of aqueous two-phase systems were measured. The property parameter differences between the two phases increased with increasing tie line length and then improved the phase separation rate. Moreover, a modified correlation equation including the phase separation rate, tie line length, and physical properties of the four aqueous two-phase systems has been proposed and successfully tested in the bottom-continuous phase, whose coefficients were estimated through regression analysis. The predicted results of PEG1000/sodium citrate aqueous two-phase systems were verified through the stationary phase retention in the cross-axis countercurrent chromatography.


2004 ◽  
pp. 179-186 ◽  
Author(s):  
Mirjana Antov ◽  
Draginja Pericin ◽  
Biljana Trbojevic

The effect of various sulphate salts on the partitioning of endo-pectinase and exo-pectinase in aqueous two-phase systems, composed of polyethylene glycol and dextran, was studied. Presence of ammonium sulphate and sodium sulphate at concentration 15 mmol/l in the system polyethylene glycol 4000/crude dextran, at tie-line length 7.44%, increased partition coefficient of endo-pectinase 1.25 and 1.2 fold, respectively. Ammonium sulphate at 15 mmol/l and sodium sulphate at 5 mmol/l enhanced partition coefficient for exo-pectinase for about 60% in comparison to the system without salts. Addition of magnesium and sodium sulphate to a final concentration of 0.3 mmol/l in the system containing polyethylene glycol 6000/dextran 500 000, at tie-line length 6.26%, increased the partition coefficient of endo activity for 95% and 32%, respectively. Both salts at the same concentration increased partition coefficient of exo activity 1.5 and 3 times, respectively, in comparison to the system without salts.


2019 ◽  
Vol 73 (6) ◽  
pp. 375-385
Author(s):  
Gholamhossein Parmoon ◽  
Abdorreza Nafchi ◽  
Mohsen Pirdashti

Phase diagrams and liquid ? liquid equilibrium (LLE) data for aqueous two-phase systems (ATPSs) containing zinc sulfate, magnesium sulfate or aluminium sulfate and polyethylene glycols PEG 300, 400 and 600 have been determined at 298.15 K. It was attempted to show how the PEG molecular weight and the type of cation influence the binodal curve, tie line length (TLL) and slope of the tie line (STL). The results have shown that as the PEG molecular weight increases, the two-phase region becomes extended and the binodal curve shifts to the origin. The refractive index and density of ternary (PEG 300,400 and 600 + zinc sulfate/magnesium sulfate/aluminium sulfate + water) systems have been measured to achieve the phase composition and the tie lines. Finally, the effective excluded volume (EEV) model was applied to describe the salting-out ability of the systems. The LLE data from this research may be potentially used for recovering biological molecules like proteins.


2019 ◽  
Vol 95 (1) ◽  
pp. 123-131
Author(s):  
Alonso Ornelas‐González ◽  
Stefanie U Reisenauer ◽  
Mirna González‐González ◽  
Marco Rito‐Palomares

Sign in / Sign up

Export Citation Format

Share Document