Enzymic hydrolysis of lignocellulosic materials: I. Models for the hydrolysis process ? a theoretical study

1991 ◽  
Vol 38 (2) ◽  
pp. 135-138 ◽  
Author(s):  
Lars Vallander ◽  
Karl-Erik L. Eriksson
1989 ◽  
Vol 56 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Craig G. Smith ◽  
Peter A. Munro ◽  
Donald E. Otter ◽  
Ralph M. Brauer

SummaryEffects of the reaction variables pH, temperature, time, enzyme concentration and solids concentration on the hydrolysis and solubilization of lactalbumin slurries by Alcalase have been determined. Reaction progress curves, solubilization v. time, were very unusual with a maximum solubilization of 96% occurring at a short reaction time corresponding to a degree of hydrolysis of 11–12%. Further hydrolysis beyond this point produced a rapid decrease in solubilization to about 67%, followed by a further gradual increase in solubilization with prolonged hydrolysis. The unusual solubilization profile was also produced by increasing enzyme concentration at fixed reaction time. The effects of pH, temperature and solids concentration were similar to those found in the hydrolysis and solubilization of other insoluble proteins. The implications of the results for the design and operation of an enzymic hydrolysis process are discussed.


1963 ◽  
Vol 46 (2) ◽  
pp. 341-343
Author(s):  
M Alice Brown ◽  
James R Woodward ◽  
Floyd DeEds

Abstract The amount of naturally occurring methanol in fruit must be known so that the quantity left as fumigation residue can be determined. In a study of methanol content of raisins, which had given inconsistent results, the raisins were subjected to different conditions of treatment immediately prior to methanol determination. Conditions that favored pectin esterase activity gave higher values for methanol content than conditions known to inactivate enzymes. Evidence was also obtained that both chemical and enzymic hydrolysis of methyl ester groups of pectic materials occur during analysis.


1975 ◽  
Vol 64 (3) ◽  
pp. 586-607 ◽  
Author(s):  
N Simionescu ◽  
M Siminoescu ◽  
G E Palade

Two heme-peptides (HP) of about 20-A diameter (heme-undecapeptide [H11P], mol wt approximately 1900 and heme-octapeptide [H8P], mol wt approximately 1550), obtained by enzymic hydrolysis of cytochrome c, were sued as probe molecules in muscle capillaries (rat diaphragm). They were localized in situ by a perixidase reaction, enhanced by the addition of imidazole to the incubation medium. Chromatography of plasma samples showed that HPs circulate predominantly as monomers for the duration of the experiments and are bound by aldehyde fixatives to plasma proteins to the extent of approximately 50% (H8P) to approximately 95% (H11P). Both tracers cross the endothelium primarily via plasmalemmal vesicles which become progressively labeled (by reaction product) from the blood front to the tissue front of the endothelium, in three successive resolvable phases. By the end of each phase the extent of labeling reaches greater than 90% of the corresponding vesicle population. Labeled vesicles appear as either isolated units or chains which form patent channels across the endothelium. The patency of these channels was checked by specimen tilting and graphic analysis of their images. No evidence was found for early or preferential marking of the intercellular junctions and spaces by reaction product. It is concluded that the channels are the most likely candidate for structural equivalents of the small pores of the capillary wall since they are continuous, water-filled passages, and are provided with one or more strictures of less than 100 A. Their frequency remains to be established by future work.


Biochemistry ◽  
1969 ◽  
Vol 8 (12) ◽  
pp. 4716-4723 ◽  
Author(s):  
Howard B. Bensusan

2016 ◽  
Vol 199 ◽  
pp. 49-58 ◽  
Author(s):  
Shaoni Sun ◽  
Shaolong Sun ◽  
Xuefei Cao ◽  
Runcang Sun

In a recent paper a new enzymic relation is recorded. For the enzymic hydrolysis of salicin—by the enzyme which Gabriel Bertrand and the author have named salicinase —it is found that, in an action of fixed duration, the temperature of greatest activity of the ferment is always the same, whatever the dilutions of substrate and of enzyme adopted for the determination. In other words, the duration of the action being constant, the optimum tem­perature of the ferment is independent of the concentration both of the substrate and of the enzyme. The observation is suggestive: if true of one enzyme it may be true of all, and possibly becomes the enunciation of a general law. Herein, for the moment, lies its main interest. In the present paper further experimental evidence for this hypothesis in given, in the case of another hydrolytic enzyme, the maltase of Aspergillus oryzæ (taka-diastase).


2014 ◽  
Vol 1081 ◽  
pp. 110-114 ◽  
Author(s):  
Zhen Zhu ◽  
Hua Yin ◽  
Yan An

This research adopts the pancreatin hydrolysis of silk fibroin active peptide, evaluate the antioxidant activity of hydrolysates. In the process of hydrolysis of silk fibroin, by measuring the amino nitrogen content of neutral formaldehyde titration method. Find the amino nitrogen content gradually stabilized at around 0.37g/L, and superoxide free radical scavenging rate changing with time fluctuation trend, superoxide free radical scavenging rate to a maximum of 65.03% at 220min.The use of silk fibroin hydrolysis process optimization,reaction time 160min, enzyme concentration4% , substrate concentration 20mg/ml, pH 8, temperature 38°C. The hydrolysis process under the hydrolysate on superoxide radical scavenging rate of 72.73%. The scavenging rate of hydroxyl radical is 47.24%. Red blood cell hemolysis induced by H2O2 inhibition rate was 24.30%.


Sign in / Sign up

Export Citation Format

Share Document