Investigation on photobleaching of fluorophores: Effect of excitation power and buffer system

Author(s):  
Sangmin Ji ◽  
Seohyun Kim ◽  
Hyunggi Kim ◽  
Hye Ran Koh
1976 ◽  
Vol 36 (01) ◽  
pp. 037-048 ◽  
Author(s):  
Eric P. Brass ◽  
Walter B. Forman ◽  
Robert V. Edwards ◽  
Olgierd Lindan

SummaryThe process of fibrin formation using highly purified fibrinogen and thrombin was studied using laser fluctuation spectroscopy, a method that rapidly determines particle size in a solution. Two periods in fibrin clot formation were noted: an induction period during which no fibrin polymerization occurred and a period of rapid increase in particle size. Direct measurement of fibrin monomer polymerization and fibrinopeptide release showed no evidence of an induction period. These observations were best explained by a kinetic model for fibrin clot formation incorporating a reversible fibrinogen-fibrin monomer complex. In this model, the complex serves as a buffer system during the earliest phase of fibrin formation. This prevents the accumulation of free polymerizable fibrin monomer until an appreciable amount of fibrinogen has reacted with thrombin, at which point the fibrin monomer level rises rapidly and polymerization proceeds. Clinically, the complex may be a homeostatic mechanism preventing pathological clotting during periods of elevated fibrinogen.


1979 ◽  
Vol 42 (05) ◽  
pp. 1490-1502 ◽  
Author(s):  
C S P Jenkins ◽  
E F Ali-Briggs ◽  
G T E Zonneveld ◽  
A Sturk ◽  
J Clemetson

SummaryThe separation of the major platelet membrane glycoproteins of normal subjects and subjects with well defined platelet membrane glycoprotein abnormalities have been examined using four different polyacrylamide gel electrophoretic techniques (continuous and discontinuous). The mobilities of the resolved glycoprotein bands have been correlated with the glycoprotein nomenclature proposed for the conventional sodium dodecyl sulphate- phosphate buffer system. Since the glycoprotein distribution varies depending on the system used, the merits of each method should be considered before application to a specific problem.


2016 ◽  
Vol 5 (03) ◽  
pp. 4862 ◽  
Author(s):  
Mathew George* ◽  
Lincy Joseph ◽  
Arpit Kumar Jain ◽  
Anju V.

A simple, sensitive, rapid and economic high performance thin layer chromatographic method and a mass spectroscopic assay method has been developed for the quantification of telmisartan and hydrochlorthiazide combination in human plasma. The internal standards and analytes were extracted from human plasma by solid-phase extraction with HLB Oasis1cc (30mg) catridges. The scanning and optimization for the samples are done using methanol: water (50:50). The samples were chromatographed using reverse phase chromatography with C-18 column of different manufacturers like Ascentis C18 (150×4. 6, 5µ) using the buffer system Acetonitrile: Buffer (80:20%v/v) which consist of 2±0. 1Mm ammonium format at a flow rate of 0. 7ml/min at a column oven temperature 35±10c. The internal standard used was hydrochlorthiazide13c1, d2 and telmisartand3. The extraction techniques include conditioning, loading, washing and elution, drying followed by reconstitution of the dried samples. The volume injected was 10µl with the retention time of 3-4 min for telmisartan, 1-2 min for hydrochlorthiazide and for the internal standards the retention time was 3-4 min for telmisartand3 and 1-2 min for hydrochlorthiazide c13d2. The rinsing solution was Acetonitrile: HPLC grade water in the ratio (50:50). The above developed method was validated using various parameters like selectivity and sensitivity, accuracy and precision, matrix effects, % recovery and various stability studies. The method was proved to be sensitive, accurate, precise and reproducible. The preparation showed high recovery for the quantitative determination of telmisartan and hydrochlorthiazide in human plasma.


1985 ◽  
Vol 50 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Jaromír Hlavatý

The o-nitrobenzyl thiocyanate (I) behaves differently on the DME and on a large mercury pool electrode. Polarography did not give a sufficiently clear explanation of the reaction mechanism, only the preparative experiments yielded useful results. Whereas polarographic curves in solutions of Britton-Robinson buffer system with 50% by vol. ethanol exhibit two cathodic waves within the pH region 1-12, corresponding according to their height ratio to an uptake of 4 e and 2 e respectively, the controlled potential preparation electrolysis (CPE) and coulometry results indicate a more complicated reaction path. In the CPE carried out at the concentration of I 1 . 10 -2 mol/l the electroreductive splitting of CH2-SCN occurs as the first step. Nitrobenzyl radicals so formed react in the follow-up dimerization resulting in dibenzyl or toluene structures. Simultaneously or at a later stage the completion of the electrolytic reduction of the nitro group proceeds to the hydroxylamino group. In solution of 9 > pH > 1 the CPE of nitro compound I takes place by an ECEC mechanism yielding dibenzodiazocine III, its N-oxide IV and 2,2'-dimethylazoxybenzene (V). In course of preparative electrolysis in strongly acidic medium 2-amino-benzo(l,3)-thiazine-l-oxide (II) is formed by an EC mechanism.


1994 ◽  
Vol 49 (1-2) ◽  
pp. 19-26 ◽  
Author(s):  
B. Blümich

Abstract Recent developments, focussing on reduction of the rf excitation power by stochastic excitation, on improvements in sensitivity and excitation bandwidth by magic angle spinning, and on combining wideline spectroscopy with spatial resolution for investigations o f spatially inhomogeneous objects are reviewed.


Optik ◽  
2012 ◽  
Vol 123 (18) ◽  
pp. 1613-1616 ◽  
Author(s):  
Wenhui Fang ◽  
Chenglin Sun ◽  
Guannan Qu ◽  
Yunfeng Ding ◽  
Anyang Cao ◽  
...  

1997 ◽  
Vol 499 ◽  
Author(s):  
S. H. Kwok ◽  
P. Y. Yu ◽  
K. Uchida ◽  
T. Arai

ABSTRACTWe report on a high pressure study of emission from a series of GaInP(ordered)/GaAs heterostructures. A so-called “deep emission” band at 1.46 eV is observed in all our samples. At high excitation power, quantum well emission emerges in only one structure where thin GaP layers are inserted on both sides of the GaAs well. From the pressure dependent emission in this sample we have determined its band alignments. The role of the GaP layers in suppressing the deep emission is elucidated.


Author(s):  
Nara Caroline Pereira ◽  
Juliana de Oliveira Silva ◽  
Frederico B. De Sousa ◽  
Sued Eustáquio Mendes Miranda ◽  
Daniel Crístian Ferreira Soares ◽  
...  

Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 91
Author(s):  
Sunghyun Lim ◽  
Yong-hyeon Ji ◽  
Yeong-il Park

Railway vehicles are generally operated by connecting several vehicles in a row. Mechanisms connecting railway vehicles must also absorb front and rear shock loads that occur during a train’s operation. To minimize damage, rail car couplers are equipped with a buffer system that absorbs the impact of energy. It is difficult to perform a crash test and evaluate performance by applying a buffer to an actual railway vehicle. In this study, a simulation technique using a mathematical buffer model was introduced to overcome these difficulties. For this, a model of each element of the buffer was built based on the experimental data for each element of the coupling buffer system and a collision simulation program was developed. The buffering characteristics of a 10-car train colliding at 25 km/h were analyzed using a developed simulator. The results of the heavy collision simulation showed that the rubber buffer was directly connected to the hydraulic shock absorber in a solid contact state, and displacement of the hydraulic buffer hardly occurred despite the increase in reaction force due to the high impact speed. Since the impact force is concentrated on the vehicle to which the collision is applied, it may be appropriate to apply a deformation tube with different characteristics depending on the vehicle location.


Sign in / Sign up

Export Citation Format

Share Document