band alignments
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 55)

H-INDEX

32
(FIVE YEARS 5)

Author(s):  
I. C. Lin ◽  
M. H. Lee ◽  
P. C. Wu ◽  
S. C. Lin ◽  
J. W. Chen ◽  
...  

Abstract Thin oxide films are of vast opportunities for modern electronics and can facilitate emergent phenomena by factors absent in the bulk counterparts, such as the ubiquitous epitaxial strain and interfacial charge doping. Here, we demonstrate the twisting of intended bulk-metallic phases in 10-unit-cell LaNiO3, PrNiO3, and NdNiO3 films on (001)-oriented SrTiO3 into distinct charge-lattice entangled states by epitaxial strains. Using atomically-resolved electron microscopy and spectroscopy, the interfacial electron doping into SrTiO3 in the conventional context of band alignments are discounted. Instead, spontaneously doped holes that are localized and at the order of 1013 cm-2 are atomically unraveled across all three heterointerfaces and associated with strain mitigations by the accompanied atomic intermixing with various ionic radii. The epitaxial strains also lead to condensations of monoclinic-C2/c lattice instabilities, which are hidden to the bulk phase diagram. The group-theoretical analysis of characteristic transition pathways unveils the strain resurrection of the hidden C2/c symmetry. While this strain-induced monoclinic phase in LaNiO3 remains metallic at room temperature, those in PrNiO3 and NdNiO3 turn out to be insulating. Such strain-induced monoclinic lattice instabilities and parasitic localized holes go beyond the classical elastic deformations of films upon epitaxial strains and hint on plausible hidden orders in versatile oxide heterostructures with unexpected properties, of which the exploration is only at the infancy and full of potentials.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ritesh Kumar ◽  
Abhishek K. Singh

AbstractStrategies combining high-throughput (HT) and machine learning (ML) to accelerate the discovery of promising new materials have garnered immense attention in recent years. The knowledge of new guiding principles is usually scarce in such studies, essentially due to the ‘black-box’ nature of the ML models. Therefore, we devised an intuitive method of interpreting such opaque ML models through SHapley Additive exPlanations (SHAP) values and coupling them with the HT approach for finding efficient 2D water-splitting photocatalysts. We developed a new database of 3099 2D materials consisting of metals connected to six ligands in an octahedral geometry, termed as 2DO (octahedral 2D materials) database. The ML models were constructed using a combination of composition and chemical hardness-based features to gain insights into the thermodynamic and overall stabilities. Most importantly, it distinguished the target properties of the isocompositional 2DO materials differing in bond connectivities by combining the advantages of both elemental and structural features. The interpretable ML regression, classification, and data analysis lead to a new hypothesis that the highly stable 2DO materials follow the HSAB principle. The most stable 2DO materials were further screened based on suitable band gaps within the visible region and band alignments with respect to standard redox potentials using the GW method, resulting in 21 potential candidates. Moreover, HfSe2 and ZrSe2 were found to have high solar-to-hydrogen efficiencies reaching their theoretical limits. The proposed methodology will enable materials scientists and engineers to formulate predictive models, which will be accurate, physically interpretable, transferable, and computationally tractable.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3122
Author(s):  
Rao Fu ◽  
Yinyan Gong ◽  
Can Li ◽  
Lengyuan Niu ◽  
Xinjuan Liu

The development of highly active and stable photocatalysts, an effective way to remediate environment pollution and alleviate energy shortages, remains a challenging issue. In this work, a CdIn2S4/In(OH)3 nanocomposite was deposited in-situ on NiCr-LDH nanosheets by a simple hydrothermal method, and the obtained CdIn2S4/In(OH)3/NiCr-LDH heterostructure photocatalysts with multiple intimate-contact interfaces exhibited better photocatalytic activity. The photocatalytic H2 evolution rate of CdIn2S4/In(OH)3/NiCr-LDH increased to 10.9 and 58.7 times that of the counterparts CdIn2S4 and NiCr-LDH, respectively. Moreover, the photocatalytic removal efficiency of Cr(VI) increased from 6% for NiCr-LDH and 75% for CdIn2S4 to 97% for CdIn2S4/In(OH)3/NiCr-LDH. The enhanced photocatalytic performance was attributed to the formation of multi-interfaces with strong interfacial interactions and staggered band alignments, which offered multiple pathways for carrier migration, thus promoting the separation efficiency of photo-excited electrons and holes. This study demonstrates a facile method to fabricate inexpensive and efficient heterostructure photocatalysts for solving environmental problems.


Author(s):  
Ashenafi Abadi Elyas ◽  
Sai Myo Than Htay ◽  
Yoshio HASHIMOTO ◽  
Ito Kentaro ◽  
Noritaka Momose

Abstract The effect of annealing on physical properties of a SnS thin film and also on SnS/CdS heterojunction band alignment was studied. Vacuum annealing has greatly improved the crystalline quality of SnS and average grain size of 1.6 µm was achieved. Sulfur-rich secondary phases observed on the surface of as-grown SnS thin film were eliminated after vacuum annealing, resulting in a decrease of the resistivity and an increase of the carrier concentration of the film. A maximum hole mobility of 17 cm2V-1s-1 was obtained for SnS thin films annealed at 400 ֯C. A transition of SnS/CdS heterojunction from “spike” type to “cliff” type was observed when the vacuum annealed SnS thin film was post-air-annealed at 200 and 250 ֯C. The band alignment of SnS/CdS heterojunction could be adjustable between “spike” type to “cliff” type via vacuum annealing followed by post-air-annealing.


Author(s):  
Xinyi Xia ◽  
Chaker Fares ◽  
Fan Ren ◽  
Anna Hassa ◽  
Holger von Wenckstern ◽  
...  

Abstract Valence band offsets were measured by X Ray Photoelectron Spectroscopy for SiO2 deposited by Atomic Layer Deposition on α-(AlxGa1-x)2O3 alloys with x= 0.26-0.74 grown with a continuous composition spread to enable investigations of the band alignment as a function of the alloy composition. From measurement of the core levels in the alloys, the bandgaps were determined to range from 5.8 eV (x=0.26) to 7eV (x=0.74). The valence band offsets were -1.2 eV for x=0.26, -0.2 eV for x=0.42, 0.2 eV for x=0.58 and 0.4 eV for x=0.74. Given the bandgap of the SiO2 was 8.7 eV, this led to conduction band offsets of 4.1 eV (x=0.26) to 1.3 eV (x=0.74). The band alignments were nested for x>0.5 , but at lower Al contents the conductions band offsets were negative, with a staggered band alignment. This shows the challenge of finding appropriate dielectrics for this ultra-wide bandgap semiconductor system.


Sign in / Sign up

Export Citation Format

Share Document