scholarly journals Ectodermal disturbance in development shared by anorexia and schizophrenia may reflect neurodevelopmental abnormalities

2021 ◽  
Author(s):  
Barbara Remberk ◽  
Piotr Niwiński ◽  
Ewa Brzóska‐Konkol ◽  
Anna Borowska ◽  
Anna Papasz‐Siemieniuk ◽  
...  
2018 ◽  
Vol 16 (05) ◽  
pp. 362-368 ◽  
Author(s):  
Federica Sullo ◽  
Agata Polizzi ◽  
Stefano Catanzaro ◽  
Selene Mantegna ◽  
Francesco Lacarrubba ◽  
...  

Cerebellotrigeminal dermal (CTD) dysplasia is a rare neurocutaneous disorder characterized by a triad of symptoms: bilateral parieto-occipital alopecia, facial anesthesia in the trigeminal area, and rhombencephalosynapsis (RES), confirmed by cranial magnetic resonance imaging. CTD dysplasia is also known as Gómez-López-Hernández syndrome. So far, only 35 cases have been described with varying symptomatology. The etiology remains unknown. Either spontaneous dominant mutations or de novo chromosomal rearrangements have been proposed as possible explanations. In addition to its clinical triad of RES, parietal alopecia, and trigeminal anesthesia, CTD dysplasia is associated with a wide range of phenotypic and neurodevelopmental abnormalities.Treatment is symptomatic and includes physical rehabilitation, special education, dental care, and ocular protection against self-induced corneal trauma that causes ulcers and, later, corneal opacification. The prognosis is correlated to the mental development, motor handicap, corneal–facial anesthesia, and visual problems. Follow-up on a large number of patients with CTD dysplasia has never been reported and experience is limited to few cases to date. High degree of suspicion in a child presenting with characteristic alopecia and RES has a great importance in diagnosis of this syndrome.


2021 ◽  
Vol 141 (3) ◽  
pp. 399-413 ◽  
Author(s):  
R. A. Hickman ◽  
P. L. Faust ◽  
M. K. Rosenblum ◽  
K. Marder ◽  
M. F. Mehler ◽  
...  

AbstractNeuropathologic hallmarks of Huntington Disease (HD) include the progressive neurodegeneration of the striatum and the presence of Huntingtin (HTT) aggregates that result from abnormal polyQ expansion of the HTT gene. Whether the pathogenic trinucleotide repeat expansion of the HTT gene causes neurodevelopmental abnormalities has garnered attention in both murine and human studies; however, documentation of discrete malformations in autopsy brains of HD individuals has yet to be described. We retrospectively searched the New York Brain Bank (discovery cohort) and an independent cohort (validation cohort) to determine whether developmental malformations are more frequently detected in HD versus non-HD brains and to document their neuropathologic features. One-hundred and thirty HD and 1600 non-HD whole brains were included in the discovery cohort and 720 HD and 1989 non-HD half brains were assessed in the validation cohort. Cases with developmental malformations were found at 6.4–8.2 times greater frequency in HD than in non-HD brains (discovery cohort: OR 8.68, 95% CI 3.48–21.63, P=4.8 × 10-5; validation cohort: OR 6.50, 95% CI 1.83–23.17, P=0.0050). Periventricular nodular heterotopias (PNH) were the most frequent malformations and contained HTT and p62 aggregates analogous to the cortex, whereas cortical malformations with immature neuronal populations did not harbor such inclusions. HD individuals with malformations had heterozygous HTT CAG expansions between 40 and 52 repeats, were more frequently women, and all were asymmetric and focal, aside from one midline hypothalamic hamartoma. Using two independent brain bank cohorts, this large neuropathologic series demonstrates an increased occurrence of developmental malformations in HD brains. Since pathogenic HTT gene expansion is associated with genomic instability, one possible explanation is that neuronal precursors are more susceptible to somatic mutation of genes involved in cortical migration. Our findings further support emerging evidence that pathogenic trinucleotide repeat expansions of the HTT gene may impact neurodevelopment.


2008 ◽  
Vol 86 (13) ◽  
pp. 2839-2847 ◽  
Author(s):  
Dina Shafey ◽  
Alex E. MacKenzie ◽  
Rashmi Kothary

2019 ◽  
Author(s):  
Kagistia Hana Utami ◽  
Niels H. Skotte ◽  
Ana R. Colaço ◽  
Nur Amirah Binte Mohammad Yusof ◽  
Bernice Sim ◽  
...  

AbstractFragile X syndrome (FXS) is an incurable neurodevelopmental disorder with no effective treatment. FXS is caused by epigenetic silencing ofFMR1and loss of FMRP expression. To investigate the consequences of FMRP deficiency in the context of human physiology, we established isogenicFMR1knockout (FMR1KO) human embryonic stem cells (hESCs). Integrative analysis of the transcriptomic and proteomic profiles of hESC-derived FMRP-deficient neurons revealed several dysregulated pathways important for brain development including processes related to axon development, neurotransmission, and the cell cycle. We functionally validated alterations in a number of these pathways, showing abnormal neural rosette formation and increased neural progenitor cell proliferation inFMR1KO cells. We further demonstrated neurite outgrowth and branching deficits along with impaired electrophysiological network activity in FMRP-deficient neurons. Using isogenicFMR1KO hESC-derived neurons, we reveal key molecular signatures and neurodevelopmental abnormalities arising from loss of FMRP. We anticipate that theFMR1KO hESCs and the neuronal transcriptome and proteome datasets will provide a platform to delineate the pathophysiology of FXS in human neural cells.


2017 ◽  
Vol 4 (3) ◽  
pp. 804 ◽  
Author(s):  
Kavya M. K. ◽  
Radhamani K. V. ◽  
Mahesh P.

Background: Incomplete formation and maturation of the central nervous system makes it extremely vulnerable to injury, in the case of premature neonates. This can result in a broad range of neurodevelopmental abnormalities. Cranial ultrasound is a sensitive tool for the early detection of these. Hence the present study was undertaken to assess the prevalence of neurosonological abnormality in preterm infants. The aims of the study were to identify and enumerate the neurosonographic features, to assess the severity of brain injuries by grading the neurosonographic findings and to correlate the clinical presentations with the neurosonographic findings.Methods: The present study was conducted in Department of Radiodiagnosis, Pariyaram Medical College. It consisted of all preterm neonates (less than 37 weeks of gestational age) referred to the Radiology department. The initial scan will be done as soon as possible (within 2 weeks of birth) followed by a repeat scan of the same infants at 36 weeks of corrected age, and at 8weeks post-partum.Results: A total of 100 neonates with gestational age varying from 29 to 37 weeks were studied, with the birth weight varying from 1.5 to 1.9 kg. The most common abnormality found on neurosonogram was germinal-matrix haemorrhage, followed by periventricular leukomalacia.Conclusions: Real time sonography is a sensitive non-invasive initial investigation for the detection of various brain lesions in the preterm neonates.


2020 ◽  
Vol 12 ◽  
Author(s):  
Ramon da Silva Raposo ◽  
Daniel Vieira Pinto ◽  
Ricardo Moreira ◽  
Ronaldo Pereira Dias ◽  
Carlos Alberto Fontes Ribeiro ◽  
...  

Worldwide environmental tragedies of anthropogenic origin causing massive release of metals and other pollutants have been increasing considerably. These pollution outbreaks affect the ecosystems and impact human health. Among those tragedies, recent large-scale environmental disasters in Brazil strongly affected riverside populations, leading to high-risk exposure to methylmercury (MeHg). MeHg is highly neurotoxic to the developing brain. This toxicant causes neural stem cell dysfunction and neurodevelopmental abnormalities. However, less is known about the effects of MeHg in the postnatal neurogenic niche, which harbors neural stem cells and their progeny, in the adult brain. Therefore, taking in consideration the impact of MeHg in human health it is urgent to clarify possible associations between exposure to mercury, accelerated cognitive decline, and neurodegenerative diseases. In this perspectives paper, we discuss the neurotoxic mechanisms of MeHg on postnatal neurogenesis and the putative implications associated with accelerated brain aging and early-onset cognitive decline in populations highly exposed to this environmental neurotoxicant.


Sign in / Sign up

Export Citation Format

Share Document