ICAT as a potential enhancer of monocytic differentiation: implications from the comparative proteome analysis of the HL60 cell line stimulated by all-trans retinoic acid and NSC67657

2009 ◽  
Vol 27 (6) ◽  
pp. 329-337 ◽  
Author(s):  
Weijia Wang ◽  
Xiuming Zhang ◽  
Kaiying Deng ◽  
Shifeng Huang ◽  
Xiaoqin Mao ◽  
...  
Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 490-496 ◽  
Author(s):  
KD Yang ◽  
T Mizobuchi ◽  
SM Kharbanda ◽  
R Datta ◽  
E Huberman ◽  
...  

Treatment of human HL-60 leukemic cells with 12-O-tetradecanoylphorbol- 13-acetate (TPA) is associated with activation of protein kinase C (PKC) and induction of monocytic differentiation. An HL-60 variant cell line, termed HL-525, derived from long-term exposure to TPA (Homma et al, Proc Natl Acad Sci USA 83: 7316, 1986) is resistant to TPA-induced differentiation and displays decreased PKC beta expression compared with the HL-60 parent line. However, this variant exhibits features of granulocytic differentiation, including nitroblue tetrazolium reduction, when exposed to all-trans retinoic acid (ATRA). Whereas treatment of HL-525 cells with ATRA or TPA alone had no effect on features of monocytic differentiation, these agents in combination resulted in cellular adhesion, nonspecific esterase staining, and induction of the c-fms (monocyte growth factor receptor) gene. In order to measure PKC expression associated with the reversal of TPA resistance by ATRA, we exposed HL-525 cells to ATRA and analyzed PKC- mRNA and protein levels. Exposure of HL-525 cells to ATRA for 3 days resulted in induction of PKC beta transcripts, whereas there was little change in PKC alpha mRNA levels. ATRA treatment was also associated with an increase in PKC activity and an induction of cytosolic PKC beta protein levels. These findings are consistent with the hypothesis that ATRA reverses TPA resistance in HL-525 cells by enhancing the expression of PKC.


Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 490-496 ◽  
Author(s):  
KD Yang ◽  
T Mizobuchi ◽  
SM Kharbanda ◽  
R Datta ◽  
E Huberman ◽  
...  

Abstract Treatment of human HL-60 leukemic cells with 12-O-tetradecanoylphorbol- 13-acetate (TPA) is associated with activation of protein kinase C (PKC) and induction of monocytic differentiation. An HL-60 variant cell line, termed HL-525, derived from long-term exposure to TPA (Homma et al, Proc Natl Acad Sci USA 83: 7316, 1986) is resistant to TPA-induced differentiation and displays decreased PKC beta expression compared with the HL-60 parent line. However, this variant exhibits features of granulocytic differentiation, including nitroblue tetrazolium reduction, when exposed to all-trans retinoic acid (ATRA). Whereas treatment of HL-525 cells with ATRA or TPA alone had no effect on features of monocytic differentiation, these agents in combination resulted in cellular adhesion, nonspecific esterase staining, and induction of the c-fms (monocyte growth factor receptor) gene. In order to measure PKC expression associated with the reversal of TPA resistance by ATRA, we exposed HL-525 cells to ATRA and analyzed PKC- mRNA and protein levels. Exposure of HL-525 cells to ATRA for 3 days resulted in induction of PKC beta transcripts, whereas there was little change in PKC alpha mRNA levels. ATRA treatment was also associated with an increase in PKC activity and an induction of cytosolic PKC beta protein levels. These findings are consistent with the hypothesis that ATRA reverses TPA resistance in HL-525 cells by enhancing the expression of PKC.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5042-5042
Author(s):  
Pengcheng He ◽  
Mei Zhang ◽  
Jun Qi ◽  
Xiaoning Wang ◽  
Jieying Xi ◽  
...  

Abstract Although 90% patients with untreated acute promyelocytic leukemia(APL) obtain complete remission because of the usage of all-trans retinoic acid(ATRA), patients with ATRA-resistance are increased gradually. ATRA-resistance has become one of the main causes which affect the long-term therapeutic efficacy of APL. The mechanisms of ATRA-resistance are complex, which probably involve the metabolism of ATRA, abnormal expression of cellular retinoic acid binding protein(CRABP) and P-glycoprotein(P-gp), mutation of RARα and aberration translocation of APL. However, in these previous researches, it was one or a few proteins but not the entirety proteins that were emphasized on the mechanisms of ATRA-resistance. Comparative proteomics can analyze the entire protein expression in cells in whole and has the superiority in screening the drug-resistance proteins differentially expressed. In order to investigate the mechanisms of ATRA-resistance in APL in whole, we compared and analyzed the protein expression profiles between MR2 cells(APL cell line with ATRA-resistance) and NB4 cells(APL cell line with ATRA-sensitiveness) by comparative proteomics. After the total proteins of MR2 cells and NB4 cells were extracted respectively, they were separated by two-dimensional electrophoresis(2-DE). The differences in proteome profile between MR2 cells and NB4 cells analyzed by ImageMaster™ 2D Platinum software. The average protein spots in 2-DE maps of MR2 and NB4 cells were 1160±51 and 1068±33 respectively. 8 protein spots were selected to be identified by Matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS), in which the quantity of the protein differentially expressed was more than two times(≥2 or ≤0.5) between MR2 and NB4 cells’ 2-DE map. They were all successfully identified and their definite information was obtained. Among them, 6 proteins were probably involved in the mechanisms of ATRA-resistance in APL and they were Cofilin-1, Elongation factor 1-beta (EF-1β), Tropomyosin isoform(TM), High mobility group protein B1(HMGB1), Ran-specific GTPase-activating protein (RanGAP1) and Galectin-1. Moreover, so far there was no related report on the roles of HMGB1, RanGAP1 and Galectin-1 in the mechanisms of ATRA-resistance in APL. These differential proteins identified provide the new clues for us to further elucidate the mechanisms of ATRA-resistance from multiple factor.


Sign in / Sign up

Export Citation Format

Share Document