In Situ Observation of Cu-Ni Alloy Nanoparticle Formation by X-Ray Diffraction, X-Ray Absorption Spectroscopy, and Transmission Electron Microscopy: Influence of Cu/Ni Ratio

ChemCatChem ◽  
2013 ◽  
Vol 6 (1) ◽  
pp. 301-310 ◽  
Author(s):  
Qiongxiao Wu ◽  
Linus D. L. Duchstein ◽  
Gian Luca Chiarello ◽  
Jakob M. Christensen ◽  
Christian D. Damsgaard ◽  
...  
2017 ◽  
Vol 19 (31) ◽  
pp. 20867-20880 ◽  
Author(s):  
David C. Bock ◽  
Christopher J. Pelliccione ◽  
Wei Zhang ◽  
Janis Timoshenko ◽  
K. W. Knehr ◽  
...  

Crystal and atomic structural changes of Fe3O4upon electrochemical (de)lithiation were determined.


2006 ◽  
Vol 21 (12) ◽  
pp. 3047-3057 ◽  
Author(s):  
A. Vlad ◽  
A. Stierle ◽  
N. Kasper ◽  
H. Dosch ◽  
M. Rühle

The oxidation in air of NiAl(110) was investigated in the temperature range from 870 °C–1200 °C by in situ x-ray diffraction and transmission electron microscopy. Oxidation at 870 °C and 1 bar oxygen leads to the formation of an epitaxial layer of γ-alumina showing an R30° orientation relationship with respect to the underlying substrate. At oxidation temperatures between 950 °C and 1025 °C, we observed a coexistence of epitaxial γ- and polycrystalline δ-Al2O3. The α-Al2O3 starts to form at 1025 °C and the complete transformation of metastable phases to the stable α-alumina phase takes place at 1100 °C. The fcc-hcp martensitic-like transformation of the initial γ-Al2O3 to epitaxial α-Al2O3 was observed. X-ray diffraction and cross-section transmission electron microscopy proved the existence of a continuous epitaxial α-Al2O3 layer between the substrate and the polycrystalline oxide scale, having a thickness of about 150 nm. The relative orientation relationship between the epitaxial alumina and the underlying substrate was found to be NiAl(110) || α-Al2O3 (0001) and [110] NiAl || [1120].


1995 ◽  
Vol 10 (6) ◽  
pp. 1546-1554 ◽  
Author(s):  
G.M. Chow ◽  
L.K. Kurihara ◽  
K.M. Kemner ◽  
P.E. Schoen ◽  
W.T. Elam ◽  
...  

Nanocrystalline CoxCu100−x (4 ⋚ x ⋚ 49 at. %) powders were prepared by the reduction of metal acetates in a polyol. The structure of powders was characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), extended x-ray absorption fine structure (EXAFS) spectroscopy, solid-state nuclear magnetic resonance (NMR) spectroscopy, and vibrating sample magnetometry (VSM). As-synthesized powders were composites consisting of nanoscale crystallites of face-centered cubic (fcc) Cu and metastable face-centered cubic (fcc) Co. Complementary results of XRD, HRTEM, EXAFS, NMR, and VSM confirmed that there was no metastable alloying between Co and Cu. The NMR data also revealed that there was some hexagonal-closed-packed (hcp) Co in the samples. The powders were agglomerated, and consisted of aggregates of nanoscale crystallites of Co and Cu. Upon annealing, the powders with low Co contents showed an increase in both saturation magnetization and coercivity with increasing temperature. The results suggested that during preparation the nucleation of Cu occurred first, and the Cu crystallites served as nuclei for the formation of Co.


Sign in / Sign up

Export Citation Format

Share Document