underlying substrate
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 26)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 118 (42) ◽  
pp. e2111988118
Author(s):  
Marie E. Fiori ◽  
Kushal Bagchi ◽  
Michael F. Toney ◽  
M. D. Ediger

Glasses prepared by physical vapor deposition (PVD) are anisotropic, and the average molecular orientation can be varied significantly by controlling the deposition conditions. While previous work has characterized the average structure of thick PVD glasses, most experiments are not sensitive to the structure near an underlying substrate or interface. Given the profound influence of the substrate on the growth of crystalline or liquid crystalline materials, an underlying substrate might be expected to substantially alter the structure of a PVD glass, and this near-interface structure is important for the function of organic electronic devices prepared by PVD, such as organic light-emitting diodes. To study molecular packing near buried organic–organic interfaces, we prepare superlattice structures (stacks of 5- or 10-nm layers) of organic semiconductors, Alq3 (Tris-(8-hydroxyquinoline)aluminum) and DSA-Ph (1,4-di-[4-(N,N-diphenyl)amino]styrylbenzene), using PVD. Superlattice structures significantly increase the fraction of the films near buried interfaces, thereby allowing for quantitative characterization of interfacial packing. Remarkably, both X-ray scattering and spectroscopic ellipsometry indicate that the substrate exerts a negligible influence on PVD glass structure. Thus, the surface equilibration mechanism previously advanced for thick films can successfully describe PVD glass structure even within the first monolayer of deposition on an organic substrate.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jessica Fernandes Scortecci ◽  
Laurie L. Molday ◽  
Susan B. Curtis ◽  
Fabian A. Garces ◽  
Pankaj Panwar ◽  
...  

AbstractABCA4 is an ATP-binding cassette (ABC) transporter that flips N-retinylidene-phosphatidylethanolamine (N-Ret-PE) from the lumen to the cytoplasmic leaflet of photoreceptor membranes. Loss-of-function mutations cause Stargardt disease (STGD1), a macular dystrophy associated with severe vision loss. To define the mechanisms underlying substrate binding and STGD1, we determine the cryo-EM structure of ABCA4 in its substrate-free and bound states. The two structures are similar and delineate an elongated protein with the two transmembrane domains (TMD) forming an outward facing conformation, extended and twisted exocytoplasmic domains (ECD), and closely opposed nucleotide binding domains. N-Ret-PE is wedged between the two TMDs and a loop from ECD1 within the lumen leaflet consistent with a lateral access mechanism and is stabilized through hydrophobic and ionic interactions with residues from the TMDs and ECDs. Our studies provide a framework for further elucidating the molecular mechanism associated with lipid transport and disease and developing promising disease interventions.


Author(s):  
Inseok Song ◽  
Younghyeon Kim ◽  
Jaeseung Yu ◽  
Su Yong Go ◽  
Hong Geun Lee ◽  
...  

2021 ◽  
Vol 22 (16) ◽  
pp. 8588
Author(s):  
Alice Abend ◽  
Chelsie Steele ◽  
Heinz-Georg Jahnke ◽  
Mareike Zink

Coupling of cells to biomaterials is a prerequisite for most biomedical applications; e.g., neuroelectrodes can only stimulate brain tissue in vivo if the electric signal is transferred to neurons attached to the electrodes’ surface. Besides, cell survival in vitro also depends on the interaction of cells with the underlying substrate materials; in vitro assays such as multielectrode arrays determine cellular behavior by electrical coupling to the adherent cells. In our study, we investigated the interaction of neurons and glial cells with different electrode materials such as TiN and nanocolumnar TiN surfaces in contrast to gold and ITO substrates. Employing single-cell force spectroscopy, we quantified short-term interaction forces between neuron-like cells (SH-SY5Y cells) and glial cells (U-87 MG cells) for the different materials and contact times. Additionally, results were compared to the spreading dynamics of cells for different culture times as a function of the underlying substrate. The adhesion behavior of glial cells was almost independent of the biomaterial and the maximum growth areas were already seen after one day; however, adhesion dynamics of neurons relied on culture material and time. Neurons spread much better on TiN and nanocolumnar TiN and also formed more neurites after three days in culture. Our designed nanocolumnar TiN offers the possibility for building miniaturized microelectrode arrays for impedance spectroscopy without losing detection sensitivity due to a lowered self-impedance of the electrode. Hence, our results show that this biomaterial promotes adhesion and spreading of neurons and glial cells, which are important for many biomedical applications in vitro and in vivo.


2021 ◽  
Vol 27 (3) ◽  
pp. 422-481
Author(s):  
Matthew Mutter

Abstract J. M. Coetzee's trilogy of novels with Jesus in their titles, published between 2013 and 2019, has bewildered many reviewers. This essay review proposes that that bewilderment stems from a misconception of the novels’ allegorical dimension and of the possible meanings evoked by their titles. The trilogy is the consummation of Coetzee's meditations on analogy and linguistic skepticism; on the ontological status of fictions; on the eschatological impulsion of writing; and on memory's capacity for true recognitions that have no empirical basis. The trilogy presents us with a world that affirms a purely immanent life. Coetzee tests this world dialogically by subjecting its self-identical “here” to the nonidentical repetitions of analogical thought, through which an “elsewhere” impinges on the “here.” The trilogy's deepest questions turn on the metaphysical scope of this “elsewhere”: that is, on whether the vertiginous depths of analogy participate in an underlying substrate of meaning, recognizable as “the Word of God.”


Author(s):  
Talha Nisar ◽  
Torsten Balster ◽  
Veit Wagner

Abstract Large area MoS2 ultra-thin film deposition is one of the big challenges in the recent years. Electrodeposition provides an opportunity to grow such ultra-thin films on large scale. However, the transfer of the electrochemically grown film is challenging. Standard transfer of those thin films is done by wet etching in which the underlying substrate is etched. In this work, the polymer coated electrodeposited MoS2 films on Au are separated mechanically from the underlying substrate by using ultra-sonication. Collapse of micron-sized bubbles produced by ultra-sonication at the interface of Au and silicon substrate provides enough energy for separation due to their weak adhesion. The Au layer is then removed by standard Au-etchant (K/KI) and the polymer coated film is transferred to a desired substrate. Ammonium tetrathiomolybdate (ATTM) has been used as precursor material for the electrodeposition of the films. Initial electrochemically grown films consist of MoS3 which is reduced to MoS2 by a post-annealing step at 450–900 °C. Obtained films are investigated by AFM, Raman, UV–Vis and XPS. Crystal quality improves by increasing the post-annealing temperature. The thickness of the thinnest film was found to be equivalent to 2 monolayers of MoS2, which is desirable for future electronics. Graphic abstract


2021 ◽  
Vol 49 (7) ◽  
pp. 4120-4128
Author(s):  
Renjian Xiao ◽  
Zhuang Li ◽  
Shukun Wang ◽  
Ruijie Han ◽  
Leifu Chang

Abstract Cas12f, also known as Cas14, is an exceptionally small type V-F CRISPR–Cas nuclease that is roughly half the size of comparable nucleases of this type. To reveal the mechanisms underlying substrate recognition and cleavage, we determined the cryo-EM structures of the Cas12f-sgRNA-target DNA and Cas12f-sgRNA complexes at 3.1 and 3.9 Å, respectively. An asymmetric Cas12f dimer is bound to one sgRNA for recognition and cleavage of dsDNA substrate with a T-rich PAM sequence. Despite its dimerization, Cas12f adopts a conserved activation mechanism among the type V nucleases which requires coordinated conformational changes induced by the formation of the crRNA-target DNA heteroduplex, including the close-to-open transition in the lid motif of the RuvC domain. Only one RuvC domain in the Cas12f dimer is activated by substrate recognition, and the substrate bound to the activated RuvC domain is captured in the structure. Structure-assisted truncated sgRNA, which is less than half the length of the original sgRNA, is still active for target DNA cleavage. Our results expand our understanding of the diverse type V CRISPR–Cas nucleases and facilitate potential genome editing applications using the miniature Cas12f.


2021 ◽  
Author(s):  
Merrill Asp ◽  
Minh Tri Ho Thanh ◽  
Arvind Gopinath ◽  
Alison Elise Patteson

The ability of bacteria to colonize and grow on different surfaces is an essential process for biofilm development and depends on complex biomechanical interactions between the biofilm and the underlying substrate. Changes in the physical properties of the underlying substrate are known to alter biofilm expansion, but the mechanisms by which biofilms sense and respond to physical features of their environment are still poorly understood. Here, we report the use of synthetic polyacrylamide hydrogels with tunable stiffness and controllable pore size to assess physical effects of the substrate on biofilm development. Using time lapse microscopy to track the growth of expanding Serratia marcescens colonies, we find that biofilm colony growth can increase with increasing substrate stiffness on purely elastic substrates, unlike what is found on traditional agar substrates. Using traction force microscopy, we find that biofilms exert transient stresses correlated over length scales much larger than a single bacterium. Our results are consistent with a model of biofilm development in which the interplay between osmotic pressure arising from the biofilm and the poroelastic response of the underlying substrate controls biofilm growth and morphology.


Sign in / Sign up

Export Citation Format

Share Document