A Multifunctional Zirconium-Based Metal-Organic Framework for the One-Pot Tandem Photooxidative Passerini Three-Component Reaction of Alcohols

ChemCatChem ◽  
2017 ◽  
Vol 9 (11) ◽  
pp. 1992-2000 ◽  
Author(s):  
Davood Azarifar ◽  
Ramin Ghorbani-Vaghei ◽  
Saba Daliran ◽  
Ali Reza Oveisi
2017 ◽  
Vol 41 (15) ◽  
pp. 7108-7115 ◽  
Author(s):  
Hong-Yan Zhang ◽  
Xiao-Peng Hao ◽  
Li-Ping Mo ◽  
Sha-Sha Liu ◽  
Wen-Bo Zhang ◽  
...  

A novel magnetic metal–organic framework, NiFe2O4@MOF-5, was prepared and demonstrated to be a highly efficient catalyst for the one-pot three-component reaction of aldehyde, indole, and kojic acid.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1002 ◽  
Author(s):  
M. Asunción Molina ◽  
Victoria Gascón-Pérez ◽  
Manuel Sánchez-Sánchez ◽  
Rosa M. Blanco

The industrial use of enzymes generally necessitates their immobilization onto solid supports. The well-known high affinity of enzymes for metal-organic framework (MOF) materials, together with the great versatility of MOFs in terms of structure, composition, functionalization and synthetic approaches, has led the scientific community to develop very different strategies for the immobilization of enzymes in/on MOFs. This review focuses on one of these strategies, namely, the one-pot enzyme immobilization within sustainable MOFs, which is particularly enticing as the resultant biocomposite Enzyme@MOFs have the potential to be: (i) prepared in situ, that is, in just one step; (ii) may be synthesized under sustainable conditions: with water as the sole solvent at room temperature with moderate pHs, etc.; (iii) are able to retain high enzyme loading; (iv) have negligible protein leaching; and (v) give enzymatic activities approaching that given by the corresponding free enzymes. Moreover, this methodology seems to be near-universal, as success has been achieved with different MOFs, with different enzymes and for different applications. So far, the metal ions forming the MOF materials have been chosen according to their low price, low toxicity and, of course, their possibility for generating MOFs at room temperature in water, in order to close the cycle of economic, environmental and energy sustainability in the synthesis, application and disposal life cycle.


2020 ◽  
Vol 10 (15) ◽  
pp. 4990-4999 ◽  
Author(s):  
Ilkay Gumus ◽  
Yaşar Karataş ◽  
Mehmet Gülcan

In this paper, we present silver nanoparticles supported on a metal–organic framework (Ag@MIL-101) as a catalyst for the one-pot tandem synthesis of imines from alcohols and amines.


2018 ◽  
Vol 74 (6) ◽  
pp. 752-759
Author(s):  
Ricardo F. Mendes ◽  
Ana D. G. Firmino ◽  
João P. C. Tomé ◽  
Filipe A. Almeida Paz

A three-dimensional metal–organic framework (MOF), poly[[μ6-5′-pentahydrogen [1,1′-biphenyl]-3,3′,5,5′-tetrayltetrakis(phosphonato)]erbium(III)] 2.5-hydrate], formulated as [Er(C12H11O12P4)]·2.5H2O or [Er(H5btp)]·2.5H2O (I) and isotypical with a Y3+-based MOF reported previously by our research group [Firmino et al. (2017b). Inorg. Chem. 56, 1193–1208], was constructed based solely on Er3+ and on the polyphosphonic organic linker [1,1′-biphenyl]-3,3′,5,5′-tetrakis(phosphonic acid) (H8btp). The present work describes our efforts to introduce lanthanide cations into the flexible network, demonstrating that, on the one hand, the compound can be obtained using three distinct experimental methods, i.e. hydro(solvo)thermal (Hy), microwave-assisted (MW) and one-pot (Op), and, on the other hand, that crystallite size can be approximately fine-tuned according to the method employed. MOF I contains hexacoordinated Er3+ cations which are distributed in a zigzag inorganic chain running parallel to the [100] direction of the unit cell. The chains are, in turn, bridged by the anionic organic linker to form a three-dimensional 6,6-connected binodal network. This connectivity leads to the existence of one-dimensional channels (also running parallel to the [100] direction) filled with disordered and partially occupied water molecules of crystalization which are engaged in O—H...O hydrogen-bonding interactions with the [Er(H5btp)] framework. Additional weak π–π interactions [intercentroid distance = 3.957 (7) Å] exist between aromatic rings, which help to maintain the structural integrity of the network.


RSC Advances ◽  
2020 ◽  
Vol 10 (58) ◽  
pp. 35206-35213
Author(s):  
Abdelaziz M. Aboraia ◽  
Viktor V. Shapovalov ◽  
Alexnader A. Guda ◽  
Vera V. Butova ◽  
Alexander Soldatov

LiCoPO4 (LCP) is a promising high voltage cathode material but suffers from low conductivity and poor electrochemical properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Hossein Abdollahi-Basir ◽  
Boshra Mirhosseini-Eshkevari ◽  
Farzad Zamani ◽  
Mohammad Ali Ghasemzadeh

AbstractA one-pot three component reaction of benzaldehydes, 1H-tetrazole-5-amine, and 3-cyanoacetyl indole in the presence of a new hexamethylenetetramine-based ionic liquid/MIL-101(Cr) metal–organic framework as a recyclable catalyst was explored. This novel catalyst, which was fully characterized by XRD, FE-SEM, EDX, FT-IR, TGA, BET, and TEM exhibited outstanding catalytic activity for the preparation of a range of pharmaceutically important tetrazolo[1,5-a]pyrimidine-6-carbonitriles with good to excellent yields in short reaction time.


Sign in / Sign up

Export Citation Format

Share Document