Role of Cationic Oxidation States to Enhance the Electroactive β-Phase of Poly(vinylidene Fluoride) and its Energy Harvesting Performance

2018 ◽  
Vol 5 (22) ◽  
pp. 3533-3539 ◽  
Author(s):  
Kausalya Ganesan ◽  
Nagamalleswara R. Alluri ◽  
Nirmal Prashanth M. J. Raj ◽  
A. Chandrasekhar ◽  
S.-J. Kim
RSC Advances ◽  
2015 ◽  
Vol 5 (36) ◽  
pp. 28487-28496 ◽  
Author(s):  
Pradip Thakur ◽  
Arpan Kool ◽  
Biswajoy Bagchi ◽  
Nur Amin Hoque ◽  
Sukhen Das ◽  
...  

Electroactive β phase nucleation in cerium/yttrium nitrate hexahydrate salt modified PVDF thin filmsviaformation of hydrogen bonds.


2019 ◽  
Vol 21 (11) ◽  
pp. 5974-5988 ◽  
Author(s):  
Abhishek Sasmal ◽  
Shrabanee Sen ◽  
P. Sujatha Devi

In the present work, we report the enhanced dielectric, ferroelectric, energy storage and energy harvesting performance of a citrate-gel synthesized Bi1−xBaxFeO3 (x = 0, 0.05, 0.10) incorporating poly(vinylidene fluoride) (PVDF) matrix.


2020 ◽  
Vol 12 (52) ◽  
pp. 58072-58081
Author(s):  
Ruowen Tu ◽  
Ethan Sprague ◽  
Henry A. Sodano

2021 ◽  
pp. 096739112110420
Author(s):  
Roopa Thotadara Shivalingappa ◽  
Hebbale Narayana Rao Narasimha Murthy ◽  
Pradeep Purushothaman ◽  
Prasanna Badiger ◽  
Swapnil Savarn ◽  
...  

Energy harvesting using piezoelectric materials finds attention of researchers due to miniaturisation. Polyvinylidene fluoride (PVDF) is one such polymeric material with high piezoelectric and pyroelectric properties and hence is used for sensors, actuators, energy harvesting and biomedical devices. This study reports electrospinning of PVDF/Ag nanoparticles (AgNP) nanofibre mats for energy harvesting. Nanofibre mats were prepared by adopting voltage (20 kV), flow rate (1.5 mL/hour) and tip to collector distance (19 cm). The fibre mats were characterised using Fourier-Transformed Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). FTIR and XRD results showed 11.84% and 36.36% increase in β-phase and crystallinity, respectively, due to the addition of 1.5 wt. % AgNP to PVDF. SEM micrographs showed decrease in bead formation and increase in fibre diameter from 40 nm to 355 nm due to the addition of AgNP. Sensitivity and voltage output were studied. The fibre mats were used for development of a miniature burglar alarm system, and its response to the applied pressure was tested.


2019 ◽  
Author(s):  
Chetana Ghosal ◽  
Sujoy Kumar Ghosh ◽  
Dipankar Mandal ◽  
Brajadulal Chattopadhyay

2021 ◽  
Author(s):  
Anna Rulka

Retraction for ‘A bio-based piezoelectric nanogenerator for mechanical energy harvesting using nanohybrid of poly(vinylidene fluoride)’ by Pralay Maiti et al., Nanoscale Adv., 2019, 1, 3200–3211, DOI: 10.1039/C9NA00214F.


2021 ◽  
Author(s):  
Minmin Wang ◽  
Weiqun Liu ◽  
Xu Shi ◽  
Jinyang Pan ◽  
Bing Zhou ◽  
...  

Non-additive β-phase porous poly (vinylidene fluoride) (PVDF) aerogel with high electron affinity is successfully prepared through simple solvent exchange method. The as-prepared additive-free PVDF aerogel shows high output performance used...


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1637
Author(s):  
Miroslav Mrlík ◽  
Josef Osička ◽  
Martin Cvek ◽  
Markéta Ilčíková ◽  
Peter Srnec ◽  
...  

This paper is focused on the comparative study of the vibration sensing capabilities of poly(vinylidene fluoride) (PVDF) sheets. The main parameters such as molecular weight, initial sample thickness, stretching and poling were systematically applied, and their impact on sensing behavior was examined. The mechanical properties of prepared sheets were investigated via tensile testing on the samples with various initial thicknesses. The transformation of the α-phase to the electro-active β-phase was analyzed using FTIR after applying stretching and poling procedures as crucial post-processing techniques. As a complementary method, the XRD was applied, and it confirmed the crystallinity data resulting from the FTIR analysis. The highest degree of phase transformation was found in the PVDF sheet with a moderate molecular weight (Mw of 275 kDa) after being subjected to the highest axial elongation (500%); in this case, the β-phase content reached approximately 90%. Finally, the vibration sensing capability was systematically determined, and all the mentioned processing/molecular parameters were taken into consideration. The whole range of the elongations (from 50 to 500%) applied on the PVDF sheets with an Mw of 180 and 275 kDa and an initial thickness of 0.5 mm appeared to be sufficient for vibration sensing purposes, showing a d33 piezoelectric charge coefficient from 7 pC N−1 to 9.9 pC N−1. In terms of the d33, the PVDF sheets were suitable regardless of their Mw only after applying the elongation of 500%. Among all the investigated samples, those with an initial thickness of 1.0 mm did not seem to be suitable for vibration sensing purposes.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yixuan Lin ◽  
Yuqiong Zhang ◽  
Fan Zhang ◽  
Meining Zhang ◽  
Dalong Li ◽  
...  

AbstractThe electroactive β-phase in Poly (vinylidene fluoride, PVDF) is the most desirable conformation due to its highest pyro- and piezoelectric properties, which make it feasible to be used as flexible sensors, wearable electronics, and energy harvesters etc. In this study, we successfully developed a method to obtain high-content β-phase PVDF films and nanofiber meshes by mechanical stretching and electric spinning. The phase transition process and pyro- and piezoelectric effects of stretched films and nanofiber meshes were characterized by monitoring the polarized light microscopy (PLM) images, outputting currents and open-circuit voltages respectively, which were proved to be closely related to stretching ratio (λ) and concentrations. This study could expand a new route for the easy fabrication and wide application of PVDF films or fibers in wearable electronics, sensors, and energy harvesting devices.


Sign in / Sign up

Export Citation Format

Share Document