Support vector machine classification of suspect powders using laser-induced breakdown spectroscopy (LIBS) spectral data

2012 ◽  
Vol 26 (5) ◽  
pp. 143-149 ◽  
Author(s):  
Jessi Cisewski ◽  
Emily Snyder ◽  
Jan Hannig ◽  
Lukas Oudejans
2018 ◽  
Vol 33 (9) ◽  
pp. 1545-1551 ◽  
Author(s):  
Jingjun Lin ◽  
Xiaomei Lin ◽  
Lianbo Guo ◽  
Yangmin Guo ◽  
Yun Tang ◽  
...  

Two typical classification methods, partial least squares discriminant analysis (PLS-DA) and a support vector machine (SVM), were used to study the classification of steels with similar constituents.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1393 ◽  
Author(s):  
Yanwei Yang ◽  
Xiaojian Hao ◽  
Lili Zhang ◽  
Long Ren

Due to the complexity of, and low accuracy in, iron ore classification, a method of Laser-Induced Breakdown Spectroscopy (LIBS) combined with machine learning is proposed. In the research, we collected LIBS spectra of 10 iron ore samples. At the beginning, principal component analysis algorithm was employed to reduce the dimensionality of spectral data, then we applied k-nearest neighbor model, neural network model, and support vector machine model to the classification. The results showed that the accuracy of three models were 82.96%, 93.33%, and 94.07% respectively. The results also demonstrated that LIBS with machine learning model exhibits an excellent classification performance. Therefore, LIBS technique combined with machine learning can achieve a rapid, precise classification of iron ores, and can provide a completely new method for iron ores’ selection in the metallurgical industry.


2013 ◽  
Vol 33 (3) ◽  
pp. 0330002 ◽  
Author(s):  
王春龙 Wang Chunlong ◽  
刘建国 Liu Jianguo ◽  
赵南京 Zhao Nanjing ◽  
马明俊 Ma Mingjun ◽  
王寅 Wang Yin ◽  
...  

2015 ◽  
Vol 17 (11) ◽  
pp. 964-970 ◽  
Author(s):  
Haiyang Kong ◽  
Lanxiang Sun ◽  
Jingtao Hu ◽  
Yong Xin ◽  
Zhibo Cong

Sign in / Sign up

Export Citation Format

Share Document