scholarly journals Frontispiece: Metal–Organic Frameworks and Other Crystalline Materials for Ultrahigh Superprotonic Conductivities of 10 −2  S cm −1 or Higher

2019 ◽  
Vol 25 (25) ◽  
Author(s):  
Santanu Chand ◽  
Syed Meheboob Elahi ◽  
Arun Pal ◽  
Madhab C. Das
2021 ◽  
Vol 7 (2) ◽  
pp. 47
Author(s):  
Flávio Figueira ◽  
Filipe A. Almeida Paz

Metal–organic frameworks (MOFs) are crystalline materials with permanent porosity, composed of metal nodes and organic linkers whose well-ordered arrangement enables them to act as ideal templates to produce materials with a uniform distribution of heteroatom and metal elements. The hybrid nature of MOFs, well-defined pore structure, large surface area and tunable chemical composition of their precursors, led to the preparation of various MOF-derived porous carbons with controlled structures and compositions bearing some of the unique structural properties of the parent networks. In this regard, an important class of MOFs constructed with porphyrin ligands were described, playing significant roles in the metal distribution within the porous carbon material. The most striking early achievements using porphyrin-based MOF porous carbons are here summarized, including preparation methods and their transformation into materials for electrochemical reactions.


2021 ◽  
Vol 45 (7) ◽  
pp. 3432-3440
Author(s):  
Yu Xin ◽  
Jun Zhou ◽  
Yong Heng Xing ◽  
Feng Ying Bai ◽  
Li Xian Sun

Seven 3D metal-organic frameworks have been designed and synthesized by the hydrothermal synthetic method based on the ligand 5-aminoisophthalic acid. Complexes 1-4 have better photocatalytic degradation properties for dyes CV.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Olaya Paz Gomez ◽  
Rosa Carballo ◽  
Ana Belen Lago ◽  
Ezequiel M. Vazquez-Lopez

Polymorphism is a common phenomenon in crystalline materials but it has barely been studied in the field of metal organic frameworks. The study of polymorphism is useful to investigate structure–property...


Inorganics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 81
Author(s):  
Alessia Tombesi ◽  
Claudio Pettinari

Metal–organic frameworks (MOFs) are a family of porous crystalline materials that serve in some cases as versatile platforms for catalysis. In this review, we overview the recent developments about the use of these species as heterogeneous catalysts in olefin epoxidation and carbon dioxide cycloaddition. We report the most important results obtained in this field relating them to the presence of specific organic linkers, metal nodes or clusters and mixed-metal species. Recent advances obtained with MOF nanocomposites were also described. Finally we compare the results and summarize the major insights in specific Tables, outlining the major challenges for this emerging field. This work could promote new research aimed at producing coordination polymers and MOFs able to catalyse a broader range of CO2 consuming reactions.


2021 ◽  
Author(s):  
Shadpour Mallakpour ◽  
Elham Azadi ◽  
Chaudhery Mustansar Hussain

Over the past decade, porous crystalline materials such as covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) with unique features such as intrinsic porosity, well-defined topology, diverse functionalities, large surface...


2018 ◽  
Vol 96 (9) ◽  
pp. 875-880 ◽  
Author(s):  
Jennifer M. Rowe ◽  
Erin M. Soderstrom ◽  
Jie Zhu ◽  
Pavel M. Usov ◽  
Amanda J. Morris

Metal–organic frameworks (MOFs) are crystalline materials constructed from metal ions or clusters, connected by multidentate organic ligands. Herein, we describe the synthesis and photophysical properties of two Zr-based, anthracene-containing MOFs, assembled from 2,6-anthracenedicarboxylic acid (2,6-ADCA and 2,6-MOF) and 1,4-anthracenedicarboxylic acid (1,4-ADCA and 1,4-MOF). The 2,6-ADCA analogue formed a highly crystalline octahedral structure that is isostructural with the well-known UiO-67 frameworks. Incorporation of the 1,4-ADCA ligand, on the other hand, resulted in large rod-shaped crystals. Both MOFs exhibit linker-based luminescence. The excited-state properties of the 2,6-MOF and 1,4-MOF were examined using stead-state diffuse reflectance and emission spectroscopies and time-correlated single photon counting (TCSPC) spectroscopy. The photophysical properties of the MOFs are compared with those of the corresponding ligand in solution.


2021 ◽  
Author(s):  
Jie Min ◽  
Haifeng Lu ◽  
Bing Yan

Metal-organic frameworks (MOFs) are recognized as a class of promising crystalline materials. However, their subsequent processing and shaping still remains a challenge, one emerging strategy is to hybridize MOFs with...


2021 ◽  
pp. 2101883
Author(s):  
Ziman Chen ◽  
Xinle Li ◽  
Chongqing Yang ◽  
Kaipeng Cheng ◽  
Tianwei Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document