scholarly journals Metal/Metal Redox Isomerism Governed by Configuration

2020 ◽  
Vol 26 (70) ◽  
pp. 16811-16817
Author(s):  
Stephan Ludwig ◽  
Kai Helmdach ◽  
Mareike Hüttenschmidt ◽  
Elisabeth Oberem ◽  
Jabor Rabeah ◽  
...  
2014 ◽  
Vol 50 (86) ◽  
pp. 13077-13080 ◽  
Author(s):  
Xiaolei Zhang ◽  
Zhiwen Zhou ◽  
Hong Yan

Metal–metal redox synergy is introduced, for the first time, for B–H functionalization of inert dicarba-dodecaboranes under mild conditions in high yields.


Author(s):  
Konrad W. Hellmann ◽  
Christian H. Galka ◽  
Ina Rüdenauer ◽  
Lutz H. Gade ◽  
Ian J. Scowen ◽  
...  

Author(s):  
K. L. Merkle

The atomic structures of internal interfaces have recently received considerable attention, not only because of their importance in determining many materials properties, but also because the atomic structure of many interfaces has become accessible to direct atomic-scale observation by modem HREM instruments. In this communication, several interface structures are examined by HREM in terms of their structural periodicities along the interface.It is well known that heterophase boundaries are generally formed by two low-index planes. Often, as is the case in many fcc metal/metal and metal/metal-oxide systems, low energy boundaries form in the cube-on-cube orientation on (111). Since the lattice parameter ratio between the two materials generally is not a rational number, such boundaries are incommensurate. Therefore, even though periodic arrays of misfit dislocations have been observed by TEM techniques for numerous heterophase systems, such interfaces are quasiperiodic on an atomic scale. Interfaces with misfit dislocations are semicoherent, where atomically well-matched regions alternate with regions of misfit. When the misfit is large, misfit localization is often difficult to detect, and direct determination of the atomic structure of the interface from HREM alone, may not be possible.


2020 ◽  
Author(s):  
Shubham Deolka ◽  
Orestes Rivada Wheelaghan ◽  
Sandra Aristizábal ◽  
Robert Fayzullin ◽  
Shrinwantu Pal ◽  
...  

We report selective formation of heterobimetallic PtII/CuI complexes that demonstrate how facile bond activation processes can be achieved by altering reactivity of common organoplatinum compounds through their interaction with another metal center. The interaction of the Cu center with Pt center and with a Pt-bound alkyl group increases the stability of PtMe2 towards undesired rollover cyclometalation. The presence of the CuI center also enables facile transmetalation from electron-deficient tetraarylborate [B(ArF)4]- anion and mild C-H bond cleavage of a terminal alkyne, which was not observed in the absence of an electrophilic Cu center. The DFT study indicates that the role of Cu center acts as a binding site for alkyne substrate, while activating its terminal C-H bond.


2020 ◽  
Author(s):  
Thomas Herzog ◽  
Naomi Weitzel ◽  
Sebastian Polarz

<div><div><div><p>One of the fascinating properties of metal-semiconductor Schottky-barriers, which has been observed for some material combinations, is memristive behavior. Memristors are smart, since they can reversibly switch between a low resistance state and a high resistance state. The devices offer a great potential for advanced computing and data storage, including neuromorphic networks and resistive random-access memory. However, as for many other cases, the presence of a real interface (metal - metal oxide) has numerous disadvantages. The realization of interface-free, respectively Schottky-barrier free memristors is highly desirable. The aim of the current paper is the generation of nanowire arrays with each nanorod possessing the same crystal phase (Rutile) and segments only differing in composition. The electric conductivity is realized by segments made of highly-doped antimony tin oxide (ATO) transitioning into pure tin oxide (TO). Complex nanoarchitectures are presented, which include ATO-TO, ATO-TO-ATO nanowires either with a stepwise distribution of antimony or as a graded functional material. The electrical characterization of the materials reveals that the introduction of memristive properties in such structures is possible. The special features observed in voltage-current (IV) curves are correlated to the behavior of mobile oxygen vacancies (VO..) at different values of applied electrical potential.</p></div></div></div>


2020 ◽  
Vol 28 ◽  
Author(s):  
Hayati Filik ◽  
Asiye Aslıhan Avan ◽  
Mustafa Özyürek

: The prostate-specific antigen (PSA) has been considered a crucial serological marker for distinguishing prostate based cancer. This surveys recent progress in the construction of nanomaterial-based electrochemical immunosensors for a PSA. This review (from 2015 to 2020) reports the latest progress in PSA sensing based on the employ of different types of nanostructured materials. The most popular used nanostructured materials are metal, metal oxide, carbon-based nanomaterials, and their hybrid architectures utilized for distinct amplification protocols. In this review, the electrochemical immunosensors for prostate-specific antigen sensing are classified into three categories such as sandwich type@labeled, label free@nonlabeled and aptamer-based electrochemical immunosensor.


Sign in / Sign up

Export Citation Format

Share Document