scholarly journals Zinc‐ and Cadmium meso‐Aryl‐Isoporphyrins: Non‐Aromatic NIR Dyes with Distinct Conformational Features

Author(s):  
Çağla Baş ◽  
Jens Krumsieck ◽  
William-Dale Möller ◽  
Dominik Körner ◽  
Martin Bröring
Keyword(s):  
2020 ◽  
Vol 27 (33) ◽  
pp. 5510-5529
Author(s):  
Zengtao Wang ◽  
Qingqing Meng ◽  
Shaoshun Li

Background: Multidrug Resistance (MDR) is defined as a cross-resistance of cancer cells to various chemotherapeutics and has been demonstrated to correlate with drug efflux pumps. Visualization of drug efflux pumps is useful to pre-select patients who may be insensitive to chemotherapy, thus preventing patients from unnecessary treatment. Near-Infrared (NIR) imaging is an attractive approach to monitoring MDR due to its low tissue autofluorescence and deep tissue penetration. Molecular NIR imaging of MDR cancers requires stable probes targeting biomarkers with high specificity and affinity. Objective: This article aims to provide a concise review of novel NIR probes and their applications in MDR cancer treatment. Results: Recently, extensive research has been performed to develop novel NIR probes and several strategies display great promise. These strategies include chemical conjugation between NIR dyes and ligands targeting MDR-associated biomarkers, native NIR dyes with inherent targeting ability, activatable NIR probes as well as NIR dyes loaded nanoparticles. Moreover, NIR probes have been widely employed for photothermal and photodynamic therapy in cancer treatment, which combine with other modalities to overcome MDR. With the rapid advancing of nanotechnology, various nanoparticles are incorporated with NIR dyes to provide multifunctional platforms for controlled drug delivery and combined therapy to combat MDR. The construction of these probes for MDR cancers targeted NIR imaging and phototherapy will be discussed. Multimodal nanoscale platform which integrates MDR monitoring and combined therapy will also be encompassed. Conclusion: We believe these NIR probes project a promising approach for diagnosis and therapy of MDR cancers, thus holding great potential to reach clinical settings in cancer treatment.


Nanoscale ◽  
2021 ◽  
Author(s):  
Matias Luis Picchio ◽  
Julian Bergueiro Álvarez ◽  
Stefanie Wedepohl ◽  
Roque J Minari ◽  
Cecilia Ines Alvarez Igarzabal ◽  
...  

After several decades of development in the field of near-infrared (NIR) dyes for photothermal therapy (PTT), indocyanine green (ICG) still remains the only FDA-approved NIR contrast agent. However, upon NIR...


2021 ◽  
Author(s):  
Gabriele Selvaggio ◽  
Robert Nißler ◽  
Peter Nietmann ◽  
Atanu Patra ◽  
Lukas Jacek Patalag ◽  
...  

Near-infrared (NIR) fluorophores are emerging tools for biophotonics because of their reduced scattering, increased tissue penetration and low phototoxicity. However, the library of NIR fluorophores is still limited. Here, we report the NIR fluorescence of two benzene-fused oligo-BODIPYs in their hexameric (H) and octameric (O) forms. These dyes emit bright NIR fluorescence (H: maxima 943/1075 nm, O: maxima 976/1115 nm) that can be excited in the NIR (H = 921 nm, O = 956 nm) or non-resonantly over a broad range in the visible region. The emission bands of H show a bathochromic shift and peak sharpening with increasing dye concentration suggesting the presence of J-aggregates. Furthermore, the emission maxima of both H and O shift up to 20 nm in solvents of different polarity. These dyes can be used as NIR ink and imaged remotely on the macroscopic level with a stand-off distance of 20 cm. We furthermore demonstrate their versatility for biophotonics by coating microscale beads and performing microrheology via NIR video particle tracking (NIR-VPT) in biopolymer (F-actin) networks. No photodamaging of the actin filaments takes place, which is typically observed for visible fluorophores and highlights the advantages of these NIR dyes.


2021 ◽  
pp. 110040
Author(s):  
Lingyun Wang ◽  
Zihao Xiong ◽  
Xueguang Ran ◽  
Hao Tang ◽  
Derong Cao
Keyword(s):  
Nir Dyes ◽  

Nanoscale ◽  
2018 ◽  
Vol 10 (21) ◽  
pp. 10025-10032 ◽  
Author(s):  
Wen Liu ◽  
Yalun Wang ◽  
Xiao Han ◽  
Ping Lu ◽  
Liang Zhu ◽  
...  

Near-infrared (NIR) fluorescence is very important for high-contrast biological imaging of high-scattering tissues such as brain tissue.


2003 ◽  
Vol 2003 (10) ◽  
pp. 1939-1947 ◽  
Author(s):  
M. Carla Aragoni ◽  
Massimiliano Arca ◽  
Tiziana Cassano ◽  
Carla Denotti ◽  
Francesco A. Devillanova ◽  
...  

2009 ◽  
Vol 15 (37) ◽  
pp. 9299-9302 ◽  
Author(s):  
Jun Hong Yao ◽  
Chunyan Chi ◽  
Jishan Wu ◽  
Kian-Ping Loh
Keyword(s):  

2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Wolfgang Becker ◽  
Vladislav Shcheslavskiy

AbstractNear-infrared (NIR) dyes are used as fluorescence markers in small animal imaging and in diffuse optical tomography. In these applications it is important to know whether the dyes bind to proteins or to other tissue constituents, and whether their fluorescence lifetimes depend on the targets they bind to. Unfortunately, neither the optical beam paths nor the detectors of commonly used in confocal and multiphoton laser scanning microscopes (LSMs) directly allow for excitation and detection of NIR fluorescence. This paper presents three ways of adapting existing LSMs with time-correlated single photon counting (TCSPC) fluorescence lifetime imaging (FLIM) systems for NIR FLIM: 1) confocal systems with wideband beamsplitters and diode laser excitation, 2) confocal systems with wideband beamsplitters and one-photon excitation by titanium-sapphire lasers, and 3) two-photon systems with optical parametric oscillator (OPO) excitation and non-descanned detection. A number of NIR dyes are tested in biological tissue. All of them show clear lifetime changes depending on the tissue structures they are bound to. We therefore believe that NIR FLIM can deliver supplementary information about the tissue composition and on local biochemical parameters.


Biomaterials ◽  
2011 ◽  
Vol 32 (29) ◽  
pp. 7127-7138 ◽  
Author(s):  
Shenglin Luo ◽  
Erlong Zhang ◽  
Yongping Su ◽  
Tianmin Cheng ◽  
Chunmeng Shi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document