cancer targeting
Recently Published Documents


TOTAL DOCUMENTS

626
(FIVE YEARS 192)

H-INDEX

56
(FIVE YEARS 15)

2021 ◽  
Author(s):  
Guorong Wang ◽  
Guangyuan Shi ◽  
Yu Tian ◽  
Lingyan Kong ◽  
Ning Ding ◽  
...  

Abstract Purpose: A sensitive and specific imaging method to detect metastatic cancer cells in lymph nodes (LNs) to detect the early-stage breast cancer is urgently needed. The purpose of this study was to investigate a novel breast cancer-targeting and tumour microenvironment ATP-responsive superparamagnetic iron oxide (SPIOs) imaging probe that was developed to detect lymph node metastasis (LNMs) through fluorescence molecular imaging (FMI) and magnetic particle imaging (MPI). The imaging nanoprobe comprised of SPIOs conjugated with breast cancer-targeting peptides (CREKA) and an ATP-responsive DNA aptamer (dsDNA-Cy5.5), abbreviated as SPIOs@A-T. Methods: SPIOs@A-T was synthesised and characterized for its imaging properties, targeting ability and toxicity in vitro. Mice with metastatic lymph node (MLN) of breast cancer were established to evaluate the FMI and MPI imaging strategy in vivo. Healthy mice with normal lymph node (NLN) were used as control group. Histological examination and biosafety evaluation were performed for further assessment. Results: After injection with SPIO@A-T, the obvious high fluorescent intensity and MPI signal were observed in MLN group than those in NLN group. MPI could also complement the limitation of imaging depth from FMI, thus could detect MLN more sensitively. The combination of the imaging strengths of FMI and MPI ensured the detection of breast cancer metastases with high sensitivity and specificity, thereby facilitating the precision differentiation of malignant from benign LNs. Besides, the biosafety evaluation results showed SPIO@A-T had good biocompatibility. Conclusion: Due to the superior properties of tumour-targeting, detection specificity, and biosafety, the SPIOs@A-T imaging probe in combination with FMI and MPI can provide a promising novel method for the early and precise detection of LNMs in clinical practice.


Author(s):  
Matteo Pitton ◽  
Andrea Fiorati ◽  
Silvia Buscemi ◽  
Lucio Melone ◽  
Silvia Farè ◽  
...  

Pectin has found extensive interest in biomedical applications, including wound dressing, drug delivery, and cancer targeting. However, the low viscosity of pectin solutions hinders their applications in 3D bioprinting. Here, we developed multicomponent bioinks prepared by combining pectin with TEMPO-oxidized cellulose nanofibers (TOCNFs) to optimize the inks’ printability while ensuring stability of the printed hydrogels and simultaneously print viable cell-laden inks. First, we screened several combinations of pectin (1%, 1.5%, 2%, and 2.5% w/v) and TOCNFs (0%, 0.5%, 1%, and 1.5% w/v) by testing their rheological properties and printability. Addition of TOCNFs allowed increasing the inks’ viscosity while maintaining shear thinning rheological response, and it allowed us to identify the optimal pectin concentration (2.5% w/v). We then selected the optimal TOCNFs concentration (1% w/v) by evaluating the viability of cells embedded in the ink and eventually optimized the writing speed to be used to print accurate 3D grid structures. Bioinks were prepared by embedding L929 fibroblast cells in the ink printed by optimized printing parameters. The printed scaffolds were stable in a physiological-like environment and characterized by an elastic modulus of E = 1.8 ± 0.2 kPa. Cells loaded in the ink and printed were viable (cell viability >80%) and their metabolic activity increased in time during the in vitro culture, showing the potential use of the developed bioinks for biofabrication and tissue engineering applications.


2021 ◽  
Vol 22 (23) ◽  
pp. 13011
Author(s):  
Andrey S. Drozdov ◽  
Petr I. Nikitin ◽  
Julian M. Rozenberg

Active targeting of nanoparticles toward tumors is one of the most rapidly developing topics in nanomedicine. Typically, this strategy involves the addition of cancer-targeting biomolecules to nanoparticles, and studies on this topic have mainly focused on the localization of such formulations in tumors. Here, the analysis of the factors determining efficient nanoparticle targeting and therapy, various parameters such as types of targeting molecules, nanoparticle type, size, zeta potential, dose, and the circulation time are given. In addition, the important aspects such as how active targeting of nanoparticles alters biodistribution and how non-specific organ uptake influences tumor accumulation of the targeted nanoformulations are discussed. The analysis reveals that an increase in tumor accumulation of targeted nanoparticles is accompanied by a decrease in their uptake by the spleen. There is no association between targeting-induced changes of nanoparticle concentrations in tumors and other organs. The correlation between uptake in tumors and depletion in the spleen is significant for mice with intact immune systems in contrast to nude mice. Noticeably, modulation of splenic and tumor accumulation depends on the targeting molecules and nanoparticle type. The median survival increases with the targeting-induced nanoparticle accumulation in tumors; moreover, combinatorial targeting of nanoparticle drugs demonstrates higher treatment efficiencies. Results of the comprehensive analysis show optimal strategies to enhance the efficiency of actively targeted nanoparticle-based medicines.


Author(s):  
Neelam Mishra ◽  
Kavita Rana ◽  
Siva Deepthi Seelam ◽  
Rakesh Kumar ◽  
Vijyendra Pandey ◽  
...  

A biosurfactant producing bacterium was identified as Pseudomonas aeruginosa DNM50 based on molecular characterization (NCBI accession no. MK351591). Structural characterization using MALDI-TOF revealed the presence of 12 different congeners of rhamnolipid such as Rha-C8-C8:1, Rha-C10-C8:1, Rha-C10-C10, Rha-C10-C12:1, Rha-C16:1, Rha-C16, Rha-C17:1, Rha-Rha-C10:1-C10:1, Rha-Rha-C10-C12, Rha-Rha-C10-C8, Rha-Rha-C10-C8:1, and Rha-Rha-C8-C8. The radical scavenging activity of rhamnolipid (DNM50RL) was determined by 2, 3-diphenyl-1-picrylhydrazyl (DPPH) assay which showed an IC50 value of 101.8 μg/ ml. The cytotoxic activity was investigated against MDA-MB-231 breast cancer cell line by MTT (4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide) assay which showed a very low IC50 of 0.05 μg/ ml at 72 h of treatment. Further, its activity was confirmed by resazurin and trypan blue assay with IC50 values of 0.01 μg/ml and 0.64 μg/ ml at 72 h of treatment, respectively. Thus, the DNM50RL would play a vital role in the treatment of breast cancer targeting inhibition of p38MAPK.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chihua Wu ◽  
Youlin Tuo ◽  
Gang Hu ◽  
Jing Luo

This study mainly explores how miR-183-5p pertains to breast cancer (BC) development. Functional assays were employed to test impacts of miR-183-5p in this cancer. Targeting between RGS2 and miR-183-5p was examined with dual-luciferase assay, and how their interaction pertains to cancer progression was further unraveled. miR-183-5p level was noticeably high in cancer tissue/cells. Overexpressing miR-183-5p could remarkably deteriorate cancer progression. The regulatory gene RGS2 levels was markedly low in BC, and two genes we researched were negatively correlated. It was uncovered by rescue assay that miR-183-5p/RGS2 axis mediated tumor-relevant behaviors in BC. Altogether, miR-183-5p aggravates BC development via mediation of RGS2. miR-183-5p supplies a promising target for BC therapy.


Sign in / Sign up

Export Citation Format

Share Document