scholarly journals NIR-Emitting Benzene-Fused Oligo-BODIPYs for Bioimaging

Author(s):  
Gabriele Selvaggio ◽  
Robert Nißler ◽  
Peter Nietmann ◽  
Atanu Patra ◽  
Lukas Jacek Patalag ◽  
...  

Near-infrared (NIR) fluorophores are emerging tools for biophotonics because of their reduced scattering, increased tissue penetration and low phototoxicity. However, the library of NIR fluorophores is still limited. Here, we report the NIR fluorescence of two benzene-fused oligo-BODIPYs in their hexameric (H) and octameric (O) forms. These dyes emit bright NIR fluorescence (H: maxima 943/1075 nm, O: maxima 976/1115 nm) that can be excited in the NIR (H = 921 nm, O = 956 nm) or non-resonantly over a broad range in the visible region. The emission bands of H show a bathochromic shift and peak sharpening with increasing dye concentration suggesting the presence of J-aggregates. Furthermore, the emission maxima of both H and O shift up to 20 nm in solvents of different polarity. These dyes can be used as NIR ink and imaged remotely on the macroscopic level with a stand-off distance of 20 cm. We furthermore demonstrate their versatility for biophotonics by coating microscale beads and performing microrheology via NIR video particle tracking (NIR-VPT) in biopolymer (F-actin) networks. No photodamaging of the actin filaments takes place, which is typically observed for visible fluorophores and highlights the advantages of these NIR dyes.

Nanoscale ◽  
2021 ◽  
Author(s):  
Matias Luis Picchio ◽  
Julian Bergueiro Álvarez ◽  
Stefanie Wedepohl ◽  
Roque J Minari ◽  
Cecilia Ines Alvarez Igarzabal ◽  
...  

After several decades of development in the field of near-infrared (NIR) dyes for photothermal therapy (PTT), indocyanine green (ICG) still remains the only FDA-approved NIR contrast agent. However, upon NIR...


Nanoscale ◽  
2018 ◽  
Vol 10 (21) ◽  
pp. 10025-10032 ◽  
Author(s):  
Wen Liu ◽  
Yalun Wang ◽  
Xiao Han ◽  
Ping Lu ◽  
Liang Zhu ◽  
...  

Near-infrared (NIR) fluorescence is very important for high-contrast biological imaging of high-scattering tissues such as brain tissue.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Kandala Laxman ◽  
B. Pradeep K. Reddy ◽  
Sumit K. Mishra ◽  
Andrea Robinson ◽  
Abhijit De ◽  
...  

AbstractPhotothermal therapy (PTT) has attracted great interest in cancer treatment, and the quest for potential organic photothermal agents is underway owing to the nonbiodegradable nature and chronic toxicity of existing inorganic nanomaterials. Organic material-based nanoformulations with good photothermal and fluorescence properties in the near-infrared (NIR-I) window are scarce. However, porphyrins are one category of biocompatible systems that are advantageous for photothermal therapy but are currently based in the visible region, causing limited depth of tissue penetration and leading to compromised photothermal and near-infrared fluorescence (NIRF) imaging applications. To overcome these limitations, we report the synthesis of L,L-diphenylalanine conjugated BF2-oxasmaragdyrin (FF-BSC) and the fabrication of monodispersed spherical self-assemblies (FF-BSC NPs) using a USP class 3 solvent-water mixture. The resulting product exhibited excellent photostability (NIR exposure), multicycle photothermal efficacy, and NIR fluorescence. In vitro studies revealed good biocompatibility, efficient cellular internalization, and photothermal efficacy. Preclinical studies of these nano-self-assemblies demonstrated nontoxicity, efficient whole-body NIRF imaging, fractional passive tumor homing, and excellent photothermal tumor ablation potential. The absorbance and fluorescence of FF-BSC NPs in NIR-I make them suitable for theragnostic applications over existing porphyrins/inorganic nanomaterials for future clinical applications.


2019 ◽  
Vol 26 (21) ◽  
pp. 4029-4041 ◽  
Author(s):  
Hai-Yan Wang ◽  
Huisheng Zhang ◽  
Siping Chen ◽  
Yi Liu

Luminescence bioimaging is widely used for noninvasive monitoring of biological targets in real-time with high temporal and spatial resolution. For efficient bioimaging in vivo, it is essential to develop smart organic dye platforms. Fluorescein (FL), a traditional dye, has been widely used in the biological and clinical studies. However, visible excitation and emission limited their further application for in vivo bioimaging. Nearinfrared (NIR) dyes display advantages of bioimaging because of their minimum absorption and photo-damage to biological samples, as well as deep tissue penetration and low auto-luminescence from background in the living system. Thus, some great developments of near-infrared fluorescein-inspired dyes have emerged for bioapplication in vitro and in vivo. In this review, we highlight the advances in the development of the near-infrared chemodosimeters for detection and bioimaging based on the modification of fluoresceininspired dyes naphtho-fluorescein (NPF) and cyanine-fluorescein (Cy-FL).


1983 ◽  
Vol 38 (6) ◽  
pp. 680-686 ◽  
Author(s):  
W. Preetz ◽  
M. Bruns

Abstract (TEA)[OSCl6] is formed quantitatively by heating solid trans-(TEA)[OsX4(CO)2] (X = Br, I) in a stream of chlorine at 120 °C, and can be purified by recrystallisation from CH2Cl2 without decomposition. It is reduced immediately by acetone, methanol, Cl-, Br-, I- to give [OsCl6]2-. The standard potential [OsCl6]-/[OsCl6]2- in acetonitrile referred to the saturated mercury-mercurous sulphate electrode is 0.840 V. The IR and Ra bands of (TEA)[OsCl6], assigned according to point group Oh, are shifted to higher frequencies compared with (TEA)2[OsCl6]. The excitation at 488.0 nm gives a resonance Raman spectrum exhibiting 6 overtones of vi and combination tones up to 4ν1 + v5. The electronic absorption spectrum shows five spin-forbidden intraconfigurational transitions coupled with odd vibrational modes in the near infrared region. The spin-allowed 4A2g → 4T2g,4T1g-transitions are observed at 347 and 305 nm. The excited levels can be fitted with the parameters ⊿ = 28500 cm-1, B = 340 cm-1, ξ = 2500 cm-1 , allowing to calculate the nephelauxetic ratio β55 to 0.47. In the visible region extensive charge transfer transitions are observed. Based on the strong oxidizing character of Os(V) there is a bathochromic shift of corresponding bands of [OsCl6]- in relation to [OsCl6]2- of about 6600 cm-1 and to the isoelectronic [ReCl6]2- of about 13700 cm-1, respectively. From πt1u→dt2g the optical electronegativity is calculated to Xopt(Osv) = 2.49.


2019 ◽  
Author(s):  
Gabriele Selvaggio ◽  
Helen Preiß ◽  
Alexey Chizhik ◽  
Robert Nißler ◽  
Florian A. Mann ◽  
...  

ABSTRACTImaging of complex (biological) samples in the near infrared (nIR) range of the spectrum is beneficial due to reduced light scattering, absorption, phototoxicity and autofluorescence. However, there are only few near infrared fluorescent materials known and suitable for biomedical applications. Here, we exfoliate the layered pigment CaCuSi4O10 (known as Egyptian Blue, EB) via facile tip sonication into nanosheets (EB-NS) with ultra-high nIR fluorescence stability and brightness. The size of EB-NS can be tailored by tip sonication to diameters < 20 nm and heights down to 1 nm. EB-NS fluoresce at 910 nm and the total fluorescence intensity scales with the number of Cu2+ ions that serve as luminescent centers. Furthermore, EB-NS display no bleaching and ultra-high brightness compared to other nIR fluorophores. The versatility of EB-NS is demonstrated by in vivo single-particle tracking and microrheology measurements in developing Drosophila embryos. Additionally, we show that EB-NS can be uptaken by plants and remotely detected in a low cost stand-off detection setup despite strong plant background fluorescence. In summary, EB-NS are a highly versatile, bright, photostable and biocompatible nIR fluorescent material that has the potential for a wide range of bioimaging applications both in animal and plant systems.


2018 ◽  
Vol 17 (2) ◽  
pp. 84-91 ◽  
Author(s):  
G. V. Papayan ◽  
A. L. Akopov ◽  
P. A. Antonyan ◽  
A. A. Ilin ◽  
N. N. Petrishchev

Introduction. Near infrared (NIR) fluorescent diagnostics is promising due to a deeper penetration into biological tissues. Material and methods. In experiments on rabbits and in clinical studies evaluation the lymphatic system with the use of the instrument complex FLUM-808 was analysed. Results. For visualization of the lymphatic vessels of the skin, the intradermal administration of ICG, dissolved in 20 % albumin in the order of 0.02 mg/ml, is optimal. Peritumoral injection of ICG allows visualizing sentinel lymph nodes in patients with lung cancer. Conclusions. The developed NIR fluorescence diagnostic system FLUM-808 allows to real time visualization of lymphatic vessels and lymph nodes.


2020 ◽  
Vol 27 (33) ◽  
pp. 5510-5529
Author(s):  
Zengtao Wang ◽  
Qingqing Meng ◽  
Shaoshun Li

Background: Multidrug Resistance (MDR) is defined as a cross-resistance of cancer cells to various chemotherapeutics and has been demonstrated to correlate with drug efflux pumps. Visualization of drug efflux pumps is useful to pre-select patients who may be insensitive to chemotherapy, thus preventing patients from unnecessary treatment. Near-Infrared (NIR) imaging is an attractive approach to monitoring MDR due to its low tissue autofluorescence and deep tissue penetration. Molecular NIR imaging of MDR cancers requires stable probes targeting biomarkers with high specificity and affinity. Objective: This article aims to provide a concise review of novel NIR probes and their applications in MDR cancer treatment. Results: Recently, extensive research has been performed to develop novel NIR probes and several strategies display great promise. These strategies include chemical conjugation between NIR dyes and ligands targeting MDR-associated biomarkers, native NIR dyes with inherent targeting ability, activatable NIR probes as well as NIR dyes loaded nanoparticles. Moreover, NIR probes have been widely employed for photothermal and photodynamic therapy in cancer treatment, which combine with other modalities to overcome MDR. With the rapid advancing of nanotechnology, various nanoparticles are incorporated with NIR dyes to provide multifunctional platforms for controlled drug delivery and combined therapy to combat MDR. The construction of these probes for MDR cancers targeted NIR imaging and phototherapy will be discussed. Multimodal nanoscale platform which integrates MDR monitoring and combined therapy will also be encompassed. Conclusion: We believe these NIR probes project a promising approach for diagnosis and therapy of MDR cancers, thus holding great potential to reach clinical settings in cancer treatment.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1380
Author(s):  
Marwa M. Tharwat ◽  
Ashwag Almalki ◽  
Amr M. Mahros

In this paper, a randomly distributed plasmonic aluminum nanoparticle array is introduced on the top surface of conventional GaAs thin-film solar cells to improve sunlight harvesting. The performance of such photovoltaic structures is determined through monitoring the modification of its absorbance due to changing its structural parameters. A single Al nanoparticle array is integrated over the antireflective layer to boost the absorption spectra in both visible and near-infra-red regimes. Furthermore, the planar density of the plasmonic layer is presented as a crucial parameter in studying and investigating the performance of the solar cells. Then, we have introduced a double Al nanoparticle array as an imperfection from the regular uniform single array as it has different size particles and various spatial distributions. The comparison of performances was established using the enhancement percentage in the absorption. The findings illustrate that the structural parameters of the reported solar cell, especially the planar density of the plasmonic layer, have significant impacts on tuning solar energy harvesting. Additionally, increasing the plasmonic planar density enhances the absorption in the visible region. On the other hand, the absorption in the near-infrared regime becomes worse, and vice versa.


Vascular ◽  
2021 ◽  
pp. 170853812110328
Author(s):  
Pim Van den Hoven ◽  
Floris S Weller ◽  
Merel Van De Bent ◽  
Lauren N Goncalves ◽  
Melissa Ruig ◽  
...  

Objectives Current diagnostic modalities for patients with peripheral artery disease (PAD) mainly focus on the macrovascular level. For assessment of tissue perfusion, near-infrared (NIR) fluorescence imaging using indocyanine green (ICG) seems promising. In this prospective cohort study, ICG NIR fluorescence imaging was performed pre- and post-revascularization to assess changes in foot perfusion. Methods ICG NIR fluorescence imaging was performed in 36 patients with PAD pre- and post-intervention. After intravenous bolus injection of 0.1 mg/kg ICG, the camera registered the NIR fluorescence intensity over time on the dorsum of the feet for 15 min using the Quest Spectrum Platform®. Time-intensity curves were plotted for three regions of interest (ROI): (1) the dorsum of the foot, (2) the forefoot, and (3) the hallux. Time-intensity curves were normalized for maximum fluorescence intensity. Extracted parameters were the maximum slope, area under the curve (AUC) for the ingress, and the AUC for the egress. The non-treated contralateral leg was used as a control group. Results Successful revascularization was performed in 32 patients. There was a significant increase for the maximum slope and AUC egress in all three ROIs. The most significant difference was seen for the maximum slope in ROI 3 (3.7%/s to 6.6%/s, p < 0.001). In the control group, no significant differences were seen for the maximum slope and AUC egress in all ROIs. Conclusions This study shows the potential of ICG NIR fluorescence imaging in assessing the effect of revascularization procedures on foot perfusion. Future studies should focus on the use of this technique in predicting favorable outcome of revascularization procedures.


Sign in / Sign up

Export Citation Format

Share Document