ChemInform Abstract: COMPLEXES OF TRIMETHYLPLATINUM(IV) HALIDES WITH DITHIO- AND DISELENOETHERS, DIMETHYL DISULFIDE, AND DIMETHYL DISELENIDE

1980 ◽  
Vol 11 (39) ◽  
Author(s):  
E. W. ABEL ◽  
A. R. KHAN ◽  
K. KITE ◽  
K. G. ORRELL ◽  
V. SIK
1996 ◽  
Vol 118 (6) ◽  
pp. 1408-1412 ◽  
Author(s):  
Rebecca L. Smith ◽  
Andreas Schweighofer ◽  
Helmut Keck ◽  
Wilhelm Kuchen ◽  
Hilkka I. Kenttämaa

1995 ◽  
Vol 31 (11) ◽  
pp. 35-40 ◽  
Author(s):  
B. G. Brownlee ◽  
S. L. Kenefick ◽  
G. A. MacInnis ◽  
S. E. Hrudey

Odour compounds in extracts of bleached kraft pulp mill effluent (BKME) have been characterized by olfactory gas chromatography (OGC) and gas chromatography-mass spectrometry. A variety of sulfury odours was detected by OGC in addition to woody and pulp mill-like odours. Three sulfur compounds were identified by comparison of retention times and partial mass spectra with authentic standards: dimethyl disulfide, 3-methylthiophene and thioanisole (methyl phenyl sulfide). Typical concentrations in BKME were 1, 0.05, and 0.5 μg/l, respectively. Their odour intensity is relatively low and they were not detected by OGC. Dimethyl trisulfide was tentatively identified by comparison of its partial mass spectrum with a literature (library) spectrum. Its concentration in BKME was estimated at 0.5-2 μg/l. It corresponded to a skunky odour in the OGC profiles. Efforts to identify another odour peak, eluting just after 3-methylthiophene, with a pronounced alkyl sulfide odour were unsuccessful.


2021 ◽  
Vol 84 (3) ◽  
pp. 219-231
Author(s):  
Yu Wang ◽  
Qianru Zhou ◽  
Wei Yang ◽  
Qianzhan Yang ◽  
Xuejing Zhang ◽  
...  

2021 ◽  
Vol 9 (5) ◽  
pp. 974
Author(s):  
Marc-Kevin Zinn ◽  
Marco Singer ◽  
Dirk Bockmühl

Although malodour formation on textiles and in washing machines has been reported to be a very relevant problem in domestic laundry, the processes leading to bad odours have not been studied intensively. In particular, the smell often described as “wet-and-dirty-dustcloth-like malodour” had not been reproduced previously. We developed a lab model based on a bacterial mixture of Micrococcus luteus, Staphylococcus hominis, and Corynebacterium jeikeium, which can produce this odour type and which might allow the detailed investigation of this problem and the development of counteractions. The model uses bacterial strains that have been isolated from malodourous textiles. We could also show that the three volatile compounds dimethyl disulfide, dimethyl trisulfide, and indole contribute considerably to the “wet-fabric-like” malodour. These substances were not only found to be formed in the malodour model but have already been identified in the literature as relevant malodourous substances.


2021 ◽  
Vol 7 (6) ◽  
pp. 465
Author(s):  
Takahito Toyotome ◽  
Masahiko Takino ◽  
Masahiro Takaya ◽  
Maki Yahiro ◽  
Katsuhiko Kamei

Schizophyllum commune is a causative agent of allergic bronchopulmonary mycosis, allergic fungal rhinosinusitis, and basidiomycosis. Diagnosis of these diseases remains difficult because no commercially available tool exists to identify the pathogen. Unique volatile organic compounds produced by a pathogen might be useful for non-invasive diagnosis. Here, we explored microbial volatile organic compounds produced by S. commune. Volatile sulfur compounds, dimethyl disulfide (48 of 49 strains) and methyl ethyl disulfide (49 of 49 strains), diethyl disulfide (34 of 49 strains), dimethyl trisulfide (40 of 49 strains), and dimethyl tetrasulfide (32 of 49 strains) were detected from headspace air in S. commune cultured vials. Every S. commune strain produced at least one volatile sulfur compound analyzed in this study. Those volatile sulfur compounds were not detected from the cultures of Aspergillus spp. (A. fumigatus, A. flavus, A. niger, and A. terreus), which are other major causative agents of allergic bronchopulmonary mycosis. The last, we examined H2S detection using lead acetate paper. Headspace air from S. commune rapidly turned the lead acetate paper black. These results suggest that those volatile sulfur compounds are potent targets for the diagnosis of S. commune and infectious diseases.


2014 ◽  
Vol 78 (2) ◽  
pp. 520-530 ◽  
Author(s):  
Sadikshya R. Dangi ◽  
Rebecca Tirado-Corbala ◽  
J. Alfonso Cabrera ◽  
Dong Wang ◽  
James Gerik
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document