ChemInform Abstract: BEHAVIOR OF METALLIC IRON CATALYSTS DURING FISCHER-TROPSCH SYNTHESIS STUDIED WITH MOESSBAUER SPECTROSCOPY, X-RAY DIFFRACTION, CARBON CONTENT DETERMINATION, AND REACTION KINETIC MEASUREMENTS

1981 ◽  
Vol 12 (11) ◽  
Author(s):  
J. W. NIEMANTSVERDRIET ◽  
A. M. VAN DER KRAAN ◽  
W. L. VAN DIJK ◽  
H. S. VAN DER BAAN
Author(s):  
Ogün Baris Tapar ◽  
Jérémy Epp ◽  
Matthias Steinbacher ◽  
Jens Gibmeier

AbstractAn experimental heat treatment chamber and control system were developed to perform in-situ X-ray diffraction experiments during low-pressure carburizing (LPC) processes. Results from the experimental chamber and industrial furnace were compared, and it was proven that the built system is reliable for LPC experiments. In-situ X-ray diffraction investigations during LPC treatment were conducted at the German Electron Synchrotron Facility in Hamburg Germany. During the boost steps, carbon accumulation and carbide formation was observed at the surface. These accumulation and carbide formation decelerated the further carbon diffusion from atmosphere to the sample. In the early minutes of the diffusion steps, it is observed that cementite content continue to increase although there is no presence of gas. This effect is attributed to the high carbon accumulation at the surface during boost steps which acts as a carbon supply. During quenching, martensite at higher temperature had a lower c/a ratio than later formed ones. This difference is credited to the early transformation of austenite regions having lower carbon content. Also, it was noticed that the final carbon content dissolved in martensite reduced compared to carbon in austenite before quenching. This reduction was attributed to the auto-tempering effect.


2018 ◽  
Vol 25 (6) ◽  
pp. 1673-1682 ◽  
Author(s):  
Adam S. Hoffman ◽  
Joseph A. Singh ◽  
Stacey F. Bent ◽  
Simon R. Bare

In situ characterization of catalysts gives direct insight into the working state of the material. Here, the design and performance characteristics of a universal in situ synchrotron-compatible X-ray diffraction cell capable of operation at high temperature and high pressure, 1373 K, and 35 bar, respectively, are reported. Its performance is demonstrated by characterizing a cobalt-based catalyst used in a prototypical high-pressure catalytic reaction, the Fischer–Tropsch synthesis, using X-ray diffraction. Cobalt nanoparticles supported on silica were studied in situ during Fischer–Tropsch catalysis using syngas, H2 and CO, at 723 K and 20 bar. Post reaction, the Co nanoparticles were carburized at elevated pressure, demonstrating an increased rate of carburization compared with atmospheric studies.


2017 ◽  
Vol 546 ◽  
pp. 103-110 ◽  
Author(s):  
James Paterson ◽  
Mark Peacock ◽  
Ewen Ferguson ◽  
Manuel Ojeda ◽  
Jay Clarkson

2014 ◽  
Vol 1025-1026 ◽  
pp. 645-650
Author(s):  
Supranee Foowut ◽  
Tawanrat Palothaisit ◽  
Natthadabhorn Boonlor ◽  
Panida Prompinit ◽  
Pinsuda Viravathana

In this work, the FexOy catalysts were prepared by the co-precipitation method. The catalysts were characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and Brunauer-Emmett-Teller (BET) surface analysis. From XRD results, the FexOy with the wastewater to coagulant ratio of 1:2 catalyst (FexOy-1:2) calcined at 600 °C for 6 h showed the presence of the wustite (FeO) form. XANES analysis showed the phase of FeO in FexOy-1:2 calcined at 600 °C for 6 h which corresponded to the result from XRD. The FexOy 1:1 catalyst had higher specific surface area and larger total pore volume compared to the FexOy 1:2 catalyst.


2019 ◽  
Vol 3 (4) ◽  
pp. 25
Author(s):  
Zélie Tournoud ◽  
Frédéric De Geuser ◽  
Gilles Renou ◽  
Didier Huin ◽  
Patricia Donnadieu ◽  
...  

The phase transformations occurring during the heat treatments leading to transformation-induced plasticity (TRIP)-aided bainitic steel have been investigated in-situ by high-energy X-ray diffraction (HEXRD) conducted with synchrotron light at 90 keV. Direct microstructure characterization has been performed by electron microscopy using electron backscatter diffraction and orientation and phase mapping in a transmission electron microscope. HEXRD data allow the quantification of the evolution of the austenite phase fraction with the heat treatments, as well as its carbon content and the fraction of carbides, from the lattice parameter evolution. It is shown that different combinations of austenite fraction and carbon content can be reached by adjusting the heat treatment temperature.


Author(s):  
G. J. H. McCall

SummaryThe Bencubbin meteorite and some of its enclaves have been studied in thin section under transmitted light: supporting X-ray diffraction and chemical data have been supplied by the Smithsonian Institution, Washington. These results show the host material to consist of clinoenstatite and a little olivine (both nearly pure magnesian varieties) set in an opaque (cryptocrystalline ?) base, which is, in turn, enclosed in a mesh-work of nickel-iron, of composition equivalent to a hexa-hedrite. Two enclaves are revealed as: an atypical olivine-hypersthene chondrite (in the mode, the olivine is Fa19, and pigeonite takes the place of orthopyroxene, but the chemical analysis is typical except for a small but appreciable carbon content); and an enstatite chondrite displaying crudely formed chondrules (chemically typical, with a small but appreciable carbon content).The chondrite enclaves are not recrystallized: though Lovering has referred to the first as ‘thermally metamorphosed’, and both are dark coloured, there seems to be little evidence of the effect of the metallic host, which must surely have been molten, on the chondrite enclaves, which seem to have been able to survive in this environment without mineralogical or textural modification.Lovering has stressed the importance of this meteorite in its bearing on meteorite provenance and genesis, and the further implications of this present study are discussed briefly.


Sign in / Sign up

Export Citation Format

Share Document