Superoxide-and Ethane-Formation in Subchloroplast Particles: Catalysis by Pyridinium Derivatives

1980 ◽  
Vol 35 (9-10) ◽  
pp. 770-775 ◽  
Author(s):  
E. F. Elstner ◽  
H. P. Fischer ◽  
W. Osswald ◽  
G. Kwiatkowski

Abstract Oxygen reduction by chloroplast lamellae is catalyzed by low potential redox dyes with E′0 values between -0 .3 8 V and -0 .6 V. Compounds of E′0 values of -0 .6 7 V and lower are inactive. In subchloroplast particles with an active photosystem I but devoid of photosynthetic electron transport between the two photosystems, the active redox compounds enhance chlorophyll bleaching, superoxide formation and ethane production independent on exogenous substrates or electron donors. The activities of these compounds decrease with decreasing redox potential, with one exception: 1-methyl-4,4′-bipyridini urn bromide with an E′0 value of lower -1 V (and thus no electron acceptor of photosystem I in chloroplast lamellae with intact electron transport) stimulates light dependent superoxide formation and unsaturated fatty acid peroxidation in sub­ chloroplast particles, maximal rates appearing after almost complete chlorophyll bleaching. Since this activity is not visible with compounds with redox potentials below -0 .6 V lacking the nitrogen atom at the 1-position of the pyridinium substituent, we assume that 1 -methyl-4,4′-bi-pyridinium bromide is “activated” by a yet unknown light reaction.

1980 ◽  
Vol 35 (3-4) ◽  
pp. 303-307 ◽  
Author(s):  
E. F. Elstner ◽  
E. Lengfelder ◽  
G. Kwiatkowski

Abstract Light dependent ethane formation and chlorophyll bleaching in isolated chloroplast lamellae are enhanced by either methylviologen or α-linolenic acid. Both ethane formation and chloro­phyll bleaching are also enhanced in chloroplast particles deficient in photosynthetic electron transport, e. g. after aging, heat treatment or digitonin fragmentation. Ethane formation by sub­ chloroplast particles from endogenous substrates in the presence of methylviologen is inhibited by superoxide dismutase or by a penicillamine copper complex exhibiting superoxide dismutase activity whereas chlorophyll bleaching is enhanced by superoxide dismutase - active substances. Maximal rates of ethane formation in subchloroplast particles are observed when more than 50% of the chlorophyll is bleached and continues after 98% chlorophyll bleaching. This result indicated that methylviologen -stimulated ethane production in subchloroplast particles is not de­pendent on photosynthetic electron transport but involves “activated oxygen” - species like the superoxide radical ion, generated by a light receptor derived from the pigmentsystem of photo­ system I or activated after its destruction.


2016 ◽  
Vol 113 (43) ◽  
pp. 12322-12327 ◽  
Author(s):  
Caterina Gerotto ◽  
Alessandro Alboresi ◽  
Andrea Meneghesso ◽  
Martina Jokel ◽  
Marjaana Suorsa ◽  
...  

Photosynthetic organisms support cell metabolism by harvesting sunlight to fuel the photosynthetic electron transport. The flow of excitation energy and electrons in the photosynthetic apparatus needs to be continuously modulated to respond to dynamics of environmental conditions, and Flavodiiron (FLV) proteins are seminal components of this regulatory machinery in cyanobacteria. FLVs were lost during evolution by flowering plants, but are still present in nonvascular plants such as Physcomitrella patens. We generated P. patens mutants depleted in FLV proteins, showing their function as an electron sink downstream of photosystem I for the first seconds after a change in light intensity. flv knock-out plants showed impaired growth and photosystem I photoinhibition when exposed to fluctuating light, demonstrating FLV’s biological role as a safety valve from excess electrons on illumination changes. The lack of FLVs was partially compensated for by an increased cyclic electron transport, suggesting that in flowering plants, the FLV’s role was taken by other alternative electron routes.


1977 ◽  
Vol 32 (3-4) ◽  
pp. 271-280 ◽  
Author(s):  
Georg H. Schmid ◽  
Alfons Radunz ◽  
Wilhelm Menke

Abstract A monospecific antiserum to cytochrome f agglutinates stroma-free swellable chloroplasts from tobacco and Antirrhinum. Consequently, antigenic determinants towards which the antiserum is directed are located in the outer surface of the thylakoid membrane. The antiserum inhibits linear photosynthetic electron transport. Just as described earlier for the antiserum to polypeptide 11000 this inhibition develops in the course of the light reaction. Ultrasonication in the presence of anti­ serum abolishes the light requirement and the maximal inhibition of the electron transport reaction is immediately observed. Electron transport in chloroplasts from a tobacco mutant which ex­ hibits only photosystem I-reactions is also inhibited by the antiserum. No time lag in the light for the onset of inhibition is observed with these chloroplasts. As chloroplasts of this mutant have only single unfolded thylakoids it appears that light might preponderantly open up partitions. If the light effect is interpreted in this way, cytochrome f should be located in the partition regions but nevertheless in the outer surface of the thylakoid membrane. However, a rearrangement of molecules in the membrane in the light by which the accessibility of cytochrome f is changed can­ not be excluded. The inhibition of linear electron transport by the antiserum is approximately 50 per cent and can only be increased to 75% upon the addition of antibodies to plastocyanin. The inhibition by the antiserum to cytochrome f as well as the combined inhibition by the antisera to cytochrome f and plastocyanin can be by-passed by DCPiP. It appears that cytochrome f and plastocyanin cannot be connected in series in the electron transport chain but are both closely associated in the thylakoid membrane. PMS-mediated cyclic photophosphorylation in chloroplasts from wild type tobacco and the tobacco mutant NC95 is only inhibited if the chloroplasts are sonicated in the presence of anti­ serum. If one disregards, that ultrasonication might cause reaction artifacts, it is thinkable that the cytochrome f, involved in the PMS-mediated cyclic photophosphorylation reaction, might be located inside the membrane.


2020 ◽  
Vol 13 (9) ◽  
pp. 2903-2914 ◽  
Author(s):  
Andrey Kanygin ◽  
Yuval Milrad ◽  
Chandrasekhar Thummala ◽  
Kiera Reifschneider ◽  
Patricia Baker ◽  
...  

Photosystem I-hydrogenase chimera intercepts electron flow directly from the photosynthetic electron transport chain and directs it to hydrogen production.


1971 ◽  
Vol 26 (9) ◽  
pp. 919-921 ◽  
Author(s):  
Iris Rau ◽  
L. H. Grimme

The effects of four different substituted s-Triazines (Ametryn, Atraton, Atrazin and Simazin) on growth, photosynthesis, respiration and photoreduction of the green alga Ankistrodesmus braunii were studied.The pl50-values ( = neg. log. of that concentration which produces 50% inhibition) for these reactions suggest a specific blocking of the second light reaction only in the very low concentration range of 10-6-10-7м. The most effective substance is Ametryn (p50(O2) =7.1) and the least effective Simazin (5.4).At higher concentrations there are inhibitions which seem to affect the electron transport rather than the photosystem I.


1982 ◽  
Vol 60 (4) ◽  
pp. 409-412 ◽  
Author(s):  
Rungsit Suwanketnikom ◽  
Kriton K. Hatzios ◽  
Donald Penner ◽  
Duncan Bell

The effect of bentazon (3-isopropyl-1H-2,1,3-benzathiadiazin-(4)3H-one 2,2-dioxide) on various photochemical reactions of isolated spinach (Spinacea oleracea L.) chloroplasts was studied at concentrations 0, 5, 15, 45, and 135 μM. Bentazon at a concentration of 135 μM strongly inhibited uncoupled electron transport from water to ferricyanide or to methylviologen with inhibition percentages greater than 90%. Photosystem II mediated electron transport from water to oxidized diaminodurene, with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) blocking photosystem I, was also strongly inhibited by bentazon at 135 μM but less with lower concentrations of bentazon. Photosystem I mediated transfer of electrons from diaminodurene to methylviologen, with 3,4-dichlorophenyl-1,1-dimethylurea (DCMU) blocking photosystem II, was not inhibited by bentazon at any concentration examined. Transfer of electrons from catechol to methylviologen in hydroxylamine-treated chloroplasts was inhibited by bentazon, and the inhibition percentages were again concentration dependent. The data indicate that the site of bentazon inhibition of the photosynthetic electron transport is at the reducing side of photosystem II, between the primary electron acceptor Q and plastoquinone.


Sign in / Sign up

Export Citation Format

Share Document