Recent Advances in Biologically Active Compounds in Herbs and Spices: A Review of the Most Effective Antioxidant and Anti-Inflammatory Active Principles

2013 ◽  
Vol 53 (9) ◽  
pp. 943-953 ◽  
Author(s):  
Laura Rubió ◽  
Maria-José Motilva ◽  
Maria-Paz Romero
2017 ◽  
Vol 89 (8) ◽  
pp. 1105-1117 ◽  
Author(s):  
Nariman F. Salakhutdinov ◽  
Konstantin P. Volcho ◽  
Olga I. Yarovaya

AbstractMonoterpenes and their derivatives play an important role in the creation of new biologically active compounds including drugs. The review focuses on the data on various types of biological activity exhibited by monoterpenes and their derivatives, including analgesic, anti-inflammatory, anticonvulsant, antidepressant, anti-Alzheimer, anti-Parkinsonian, antiviral, and antibacterial (anti-tuberculosis) effects. Searching for novel potential drugs among monoterpene derivatives shows great promise for treating various pathologies. Special attention is paid to the effect of absolute configuration of monoterpenes and monoterpenoids on their activity.


2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Zita Puterová ◽  
Alžbeta Krutošíková ◽  
Daniel Végh

Highly substituted thiophene derivatives are important heterocycles found in numerous biologically active compounds. Title compounds are attractive derivatives because their applications in pharmaceuticals, agriculture and pesticides. They exhibit antimicrobial activity against various Gram(+) and Gram(-) bacteria and fungi. Many of these molecules act as allosteric enhancers of A1-adenosine receptor, glucagon antagonists as well as antioxidant and anti-inflammatory agents.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Mohammad Asif

The pyridazine moiety is an important structural feature of various pharmacological active compounds. Synthetic pyridazine compounds have been reported as effective antiprostaglandins (PGs), 5-lipoxygenase (5-LOX), and antiplatelet agents, that is, inhibitors of prostaglandin or cyclooxygenase (COX-I & COX-II) enzyme, platelet cAMP phosphodiesterase, and thromboxane A2 (TXA2) synthase. These compounds are selective and nonselective COX inhibitors and showed analgesic, anti-inflammatory, and antipyretic activity. Pyridazine compounds with antiplatelet agents inhibited TXA2enzyme. Pyridazines also exhibited antirheumatoid activity. These pyridazine compounds hold considerable interest relative to the preparation of organic intermediates and other anticipated biologically active compounds.


2021 ◽  
Vol 18 ◽  
Author(s):  
Christian Schäfer ◽  
Hyejin Cho ◽  
Bernadett Vlocskó ◽  
Guoshu Xie ◽  
Béla Török

: Recent advances in the environmentally benign synthesis of common heterocycles are described. This account features three main parts; the preparation of non-aromatic heterocycles, one-ring aromatic heterocycles and their condensed analogs. Due to the great variety of and high interest in these compounds, this work focuses on providing representative examples of the preparation of the target compounds.


Compounds ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 3-24
Author(s):  
Njomza Ajvazi ◽  
Stojan Stavber

The iodination of organic compounds is of great importance in synthetic organic chemistry. It opens comprehensive approaches for the synthesis of various biologically active compounds. The recent advances in iodination of organic compounds using elemental iodine or iodides, covering the last thirteen years, are the objective of the present review.


2020 ◽  
Vol 18 (25) ◽  
pp. 4692-4708 ◽  
Author(s):  
Jasneet Kaur ◽  
Banni Preet Kaur ◽  
Swapandeep Singh Chimni

3-Substituted-3-aminooxindoles are versatile scaffolds and these motifs constitute the core structure of number of natural products and biologically active compounds.


Synthesis ◽  
2021 ◽  
Author(s):  
Scott E. Denmark ◽  
Zhong-Lin Tao

AbstractEnantioselective diamination of alkenes represents one of the most straightforward methods to access enantioenriched, vicinal diamines, which are not only frequently encountered in biologically active compounds, but also have broad applications in asymmetric synthesis. Although the analogous dihydroxylation of olefins is well-established, the development of enantioselective olefin diamination lags far behind. Nevertheless, several successful methods have been developed that operate by different reaction mechanisms, including a cycloaddition pathway, a two-electron redox pathway, and a radical pathway. This short review summarizes recent advances and identifies limitations, with the aim of inspiring further developments in this area.1 Introduction2 Cycloaddition Pathway3 Two-Electron Redox Pathway3.1 Pd(0)/Pd(II) Diamination3.2 Pd(II)/Pd(IV) Diamination3.3 I(I)/I(III) Diamination3.4 Se(II)/Se(IV) Diamination4 One-Electron Radical Pathway4.1 Cu-Catalyzed Diamination4.2 Fe-Catalyzed Diamination5 Summary and Outlook


Sign in / Sign up

Export Citation Format

Share Document