ChemInform Abstract: Atomistic Simulations of Solid-State Materials Based on Crystal-Chemical Potential Concepts: Applications for Compounds, Metals, Alloys, and Chemical Reactions.

ChemInform ◽  
2010 ◽  
Vol 33 (29) ◽  
pp. no-no
Author(s):  
Bernhard Eck ◽  
Yasemin Kurtulus ◽  
Willy Offermans ◽  
Richard Dronskowski
2017 ◽  
Vol 136 (4) ◽  
Author(s):  
Bruno Escribano ◽  
Ariel Lozano ◽  
Tijana Radivojević ◽  
Mario Fernández-Pendás ◽  
Javier Carrasco ◽  
...  

2021 ◽  
Author(s):  
Corey R. Martin ◽  
Kyoung Chul Park ◽  
Ryan E. Corkill ◽  
Preecha Kittikhunnatham ◽  
Gabrielle A. Leith ◽  
...  

In this paper, spiropyran-containing metal- and covalent-organic frameworks (MOFs and COFs, respectively) are probed as platforms for fostering photochromic behavior in solid-state materials while simultaneously promoting directional energy transfer (ET)....


1987 ◽  
Vol 97 ◽  
Author(s):  
Steven A. Sunshine ◽  
Doris Kang ◽  
James A. Ibers

ABSTRACTThe use of A2 Q/Q melts (A - alkali metal, Q - S or Se) for the synthesis of new one-dimensional solid-state materials is found to be of general utility and is illustrated here for the synthesis of K4 Ti3 SI4. Reaction of Ti metal with a K2 S/S melt at 375°C for 50 h affords K4 Ti3 SI4. The structure possesses one-dimensional chains of seven and eightcoordinate Ti atoms with each chain isolated from all others by surrounding K atoms. There are six S-S pairs (dave - 2.069(3) Å) so that the compound is one of TiIV and may be described as K4 [Ti3 (S)2 (S2)6]. Electrical conductivity measurements indicate that this material is a semiconductor.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuaifeng Lou ◽  
Qianwen Liu ◽  
Fang Zhang ◽  
Qingsong Liu ◽  
Zhenjiang Yu ◽  
...  

Abstract Interfacial issues commonly exist in solid-state batteries, and the microstructural complexity combines with the chemical heterogeneity to govern the local interfacial chemistry. The conventional wisdom suggests that “point-to-point” ion diffusion at the interface determines the ion transport kinetics. Here, we show that solid-solid ion transport kinetics are not only impacted by the physical interfacial contact but are also closely associated with the interior local environments within polycrystalline particles. In spite of the initial discrete interfacial contact, solid-state batteries may still display homogeneous lithium-ion transportation owing to the chemical potential force to achieve an ionic-electronic equilibrium. Nevertheless, once the interior local environment within secondary particle is disrupted upon cycling, it triggers charge distribution from homogeneity to heterogeneity and leads to fast capacity fading. Our work highlights the importance of interior local environment within polycrystalline particles for electrochemical reactions in solid-state batteries and provides crucial insights into underlying mechanism in interfacial transport.


Sign in / Sign up

Export Citation Format

Share Document