ChemInform Abstract: Synthesis of High Surface Area Mixed Metal Oxide from the NiMgAl LDH Precursor for Nitro-Aldol Condensation Reaction.

ChemInform ◽  
2015 ◽  
Vol 46 (22) ◽  
pp. no-no
Author(s):  
Dipshikha Bharali ◽  
Rasna Devi ◽  
Pankaj Bharali ◽  
Ramesh C. Deka
2015 ◽  
Vol 39 (1) ◽  
pp. 172-178 ◽  
Author(s):  
Dipshikha Bharali ◽  
Rasna Devi ◽  
Pankaj Bharali ◽  
Ramesh C. Deka

NiMgAl mixed oxide catalyzes nitro-aldol condensation reaction at room temperature under solvent free conditions exhibiting 99% conversion.


2017 ◽  
Vol 114 (35) ◽  
pp. 9279-9283 ◽  
Author(s):  
Prateek Dongare ◽  
Ian MacKenzie ◽  
Degao Wang ◽  
David A. Nicewicz ◽  
Thomas J. Meyer

We describe here a surface-bound, oxide-based procedure for the photooxidation of a family of aromatic hydrocarbons by a phosphate-bearing flavin mononucleotide (FMN) photocatalyst on high surface area metal-oxide films.


2019 ◽  
Vol 41 (5) ◽  
pp. 805-805
Author(s):  
Li Fanghao Li Fanghao ◽  
Li Chenjie Li Chenjie ◽  
Chen Junyi Chen Junyi ◽  
Wang Kuiwu Wang Kuiwu ◽  
Zhang Haijiang Zhang Haijiang ◽  
...  

A series of tungstophosphoric acid (H3PW12O40; HPW) loaded on metal oxide catalysts, namely H3PW12O40/M (M= TiO2, CeO2, ZrO2) was prepared by initial wetting impregnation method and their catalytic performances were also investigated during the condensation reaction of benzaldehyde with glycol. Among them, the 20 wt% H3PW12O40/TiO2 catalyst demonstrated highly active with superior acetal yield (90.1 %) and excellent durability. The high activity of the catalyst derived from high surface area, ultra-strong Brand#248;nsted acidity and synergetic effect of Brand#248;nsted-Lewis acid. Response surface methodology (RSM) based on Box-Behnken design (BBD) was used to optimize the course of the condensation reaction of benzaldehyde with glycol, and the optimal benzaldehyde glycol acetal yield (93.4 %) could be obtained. The optimized yield and the experimental results are similar. Moreover, under optimal reaction conditions, the activation energy (Ea) of reaction could be obtained through the kinetic study of the irreversible parallel reaction model, and the Ea was 23.24 kJ/mol.


2020 ◽  
Vol 234 (5) ◽  
pp. 787-812 ◽  
Author(s):  
Hong Nhan Nong ◽  
Hoang Phi Tran ◽  
Camillo Spöri ◽  
Malte Klingenhof ◽  
Lorenz Frevel ◽  
...  

AbstractThe usage of iridium as an oxygen-evolution-reaction (OER) electrocatalyst requires very high atom efficiencies paired with high activity and stability. Our efforts during the past 6 years in the Priority Program 1613 funded by the Deutsche Forschungsgemeinschaft (DFG) were focused to mitigate the molecular origin of kinetic overpotentials of Ir-based OER catalysts and to design new materials to achieve that Ir-based catalysts are more atom and energy efficient, as well as stable. Approaches involved are: (1) use of bimetallic mixed metal oxide materials where Ir is combined with cheaper transition metals as starting materials, (2) use of dealloying concepts of nanometer sized core-shell particle with a thin noble metal oxide shell combined with a hollow or cheap transition metal-rich alloy core, and (3) use of corrosion-resistant high-surface-area oxide support materials. In this mini review, we have highlighted selected advances in our understanding of Ir–Ni bimetallic oxide electrocatalysts for the OER in acidic environments.


2002 ◽  
Vol 110 (1288) ◽  
pp. 1097-1099 ◽  
Author(s):  
Daiji SHIN ◽  
Satoshi SATO ◽  
Ryoji TAKAHASHI ◽  
Toshiaki SODESAWA

2014 ◽  
Vol 605 ◽  
pp. 299-302 ◽  
Author(s):  
Jerome Rossignol ◽  
Didier Stuerga

In literature, many papers describe the applications of semiconductor as sensitive material in sensor field. The gas sensor using tin oxide requires a strictly controlled high operating temperature in order to detect both reducing and oxidizing gases. The semiconductor nanoparticles, with their high specific surface area, increase the gas sensing performance. The originality of this work is to valorize the nanoparticle of metal oxide like SnO2, TiO2 obtained by microwave thermohydrolysis synthesis, using a gas sensing microwave transduction. The present synthesis is to prepare metal oxide nanocrystalline powder with a high surface area by microwave-induced thermohydrolysis. We propose to study the influence of the metal oxide nanoparticle, as a sensitive layer, in gas sensing measurement. The pollutant is added into an argon flow (dynamic regim). This work highlights a specific sensor response to each ammonia concentration at room temperature. It shows a quasi-linear relationship between the set of points of the real part of the response and the ammonia concentration. The authors are currently working on these issues as well as the interaction mechanism between adsorbed gas molecules and metal oxide films.


2018 ◽  
Vol 3 (3) ◽  
pp. 244-250 ◽  
Author(s):  
Dereck N. F. Muche ◽  
Flavio L. Souza ◽  
Ricardo H. R. Castro

A non-system specific method for the synthesis of metal oxide nanoparticles with high homogeneity, spherical morphology and high surface areas is proposed based on an aqueous precipitation.


Sign in / Sign up

Export Citation Format

Share Document