Dissolution behaviour of different rank coals in L‐Glutamic acid N, N‐diacetic acid chelating agent: Implications to enhance coalbed methane recovery by acid stimulation

Author(s):  
Shuya Chen ◽  
Xianyu Yang ◽  
Yanping Shi ◽  
Zhaohui Wei ◽  
Jie Zhang ◽  
...  
2015 ◽  
Vol 1092-1093 ◽  
pp. 1620-1624
Author(s):  
Zhi Hao Yang ◽  
Zhi Ping Li ◽  
Feng Peng Lai ◽  
Jun Jie Yi

According to the problems that the coalbed methane resource was rich in deep seam in China, but the economic and technology conditions were limited, it would be hard to mine with a conventional method. The CO2 capture, utilization and storage technology was provided (CO2-ECBM). The application of the technology would not only improve the methane recovery ratio from deep and unminable layer, but also put CO2 effectively in the deep layer for storage to reach a target of reducing emission. The study showed that a coal rank, coal seam pressure, coal seam permeability, injection time, injected gas types and others would affect to the recovery ratio of methane in a production mine. Therefore, before we use this technology, a rational evaluation should be conducted on the place location. So the capture and storage technology of CO2 has an important significance in protecting the natural environment.


Energy ◽  
2019 ◽  
Vol 180 ◽  
pp. 728-736 ◽  
Author(s):  
Jin Yan ◽  
Yi-Yu Lu ◽  
Dong-Liang Zhong ◽  
Zhen-Lin Zou ◽  
Jian-Bo Li

2011 ◽  
Vol 29 (6) ◽  
pp. 759-775 ◽  
Author(s):  
Fengde Zhou ◽  
Guangqing Yao ◽  
Zhonghua Tang ◽  
Oyinkepreye D. Orodu

Matrix compressibility, shrinkage and swelling can cause profound changes in porosity and permeability of coalbed during gas sorption and desorption. These factors affect the distribution of pressure, methane production and CO2 sequestration. This paper compares the effects of cleat compression and matrix shrinkage and swelling models with the injection of different compositional gas mixtures (CO2 and N2). It shows that well performance, pressure distribution and properties of the seam are strongly affected by matrix shrinkage and swelling. Matrix shrinkage and swelling also affects net present value of the enhanced coalbed methane recovery scheme. In order to select the best enhanced coalbed methane recovery schemes, economic evaluation and sensitivity studies are necessary.


Sign in / Sign up

Export Citation Format

Share Document