Comparative Analysis Between Land Surface Temperatures Obtained by Field Measurement and Satellite Remote Sensing and Its Implication in Earthquake Research

2011 ◽  
Vol 54 (2) ◽  
pp. 189-196
Author(s):  
Shun-Yun CHEN ◽  
Pei-Xun LIU ◽  
Li-Qiang LIU ◽  
Jin MA ◽  
Guo-Qiang CHEN ◽  
...  
2020 ◽  
Vol 24 (1) ◽  
pp. 1-26
Author(s):  
Patricia M. Lawston ◽  
Joseph A. Santanello ◽  
Brian Hanson ◽  
Kristi Arsensault

AbstractIrrigation has the potential to modify local weather and regional climate through a repartitioning of water among the surface, soil, and atmosphere with the potential to drastically change the terrestrial energy budget in agricultural areas. This study uses local observations, satellite remote sensing, and numerical modeling to 1) explore whether irrigation has historically impacted summer maximum temperatures in the Columbia Plateau, 2) characterize the current extent of irrigation impacts to soil moisture (SM) and land surface temperature (LST), and 3) better understand the downstream extent of irrigation’s influence on near-surface temperature, humidity, and boundary layer development. Analysis of historical daily maximum temperature (TMAX) observations showed that the three Global Historical Climate Network (GHCN) sites downwind of Columbia Basin Project (CBP) irrigation experienced statistically significant cooling of the mean summer TMAX by 0.8°–1.6°C in the post-CBP (1968–98) as compared to pre-CBP expansion (1908–38) period, opposite the background climate signal. Remote sensing observations of soil moisture and land surface temperatures in more recent years show wetter soil (~18%–25%) and cooler land surface temperatures over the irrigated areas. Simulations using NASA’s Land Information System (LIS) coupled to the Weather Research and Forecasting (WRF) Model support the historical analysis, confirming that under the most common summer wind flow regime, irrigation cooling can extend as far downwind as the locations of these stations. Taken together, these results suggest that irrigation expansion may have contributed to a reduction in summertime temperatures and heat extremes within and downwind of the CBP area. This supports a regional impact of irrigation across the study area.


2020 ◽  
Vol 18 ◽  
pp. 100314 ◽  
Author(s):  
Abdulla - Al Kafy ◽  
Md. Shahinoor Rahman ◽  
Abdullah-Al- Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Muhaiminul Islam

2021 ◽  
Vol 58 (03) ◽  
pp. 274-285
Author(s):  
H. V. Parmar ◽  
N. K. Gontia

Remote sensing based various land surface and bio-physical variables like Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), surface albedo, transmittance and surface emissivity are useful for the estimation of spatio-temporal variations in evapotranspiration (ET) using Surface Energy Balance Algorithm for Land (SEBAL) method. These variables were estimated under the present study for Ozat-II canal command in Junagadh district, Gujarat, India, using Landsat-7 and Landsat-8 images of summer season of years 2014 and 2015. The derived parameters were used in SEBAL to estimate the Actual Evapotranspiration (AET) of groundnut and sesame crops. The lower values NDVI observed during initial (March) and end (May) stages of crop growth indicated low vegetation cover during these periods. With full canopy coverage of the crops, higher value of NDVI (0.90) was observed during the mid-crop growth stage. The remote sensing-based LST was lower for agricultural areas and the area near banks of the canal and Ozat River, while higher surface temperatures were observed for rural settlements, road and areas with exposed dry soil. The maximum surface temperatures in the cropland were observed as 311.0 K during March 25, 2014 and 315.8 K during May 31, 2015. The AET of summer groundnut increased from 3.75 to 7.38 mm.day-1, and then decreased to 3.99 mm.day-1 towards the end stage of crop growth. The daily AET of summer sesame ranged from 1.06 to 7.72 mm.day-1 over different crop growth stages. The seasonal AET of groundnut and sesame worked out to 358.19 mm and 346.31 mm, respectively. The estimated AET would be helpful to schedule irrigation in the large canal command.


Sign in / Sign up

Export Citation Format

Share Document