Smad3 mediates the TGF-?-induced contraction of type I collagen gels by mouse embryo fibroblasts

2003 ◽  
Vol 54 (3) ◽  
pp. 248-253 ◽  
Author(s):  
Xiangde Liu ◽  
Fu-Qiang Wen ◽  
Tetsu Kobayashi ◽  
Shinji Abe ◽  
Qiuhong Fang ◽  
...  
PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0197105 ◽  
Author(s):  
Blanca E. Himes ◽  
Kseniya Obraztsova ◽  
Lurong Lian ◽  
Maya Shumyatcher ◽  
Ryan Rue ◽  
...  

2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Martin Liu ◽  
Angelos Karagiannis ◽  
Matthew Sis ◽  
Srivatsan Kidambi ◽  
Yiannis Chatzizisis

Objectives: To develop and validate a 3D in-vitro model of atherosclerosis that enables direct interaction between various cell types and/or extracellular matrix. Methods and Results: Type I collagen (0.75 mg/mL) was mixed with human artery smooth muscle cells (SMCs; 6x10 5 cells/mL), medium, and water. Human coronary artery endothelial cells (HCAECs; 10 5 /cm 2 ) were plated on top of the collagen gels and activated with oxidized low density lipoprotein cholesterol (LDL-C). Monocytes (THP-1 cells; 10 5 /cm 2 ) were then added on top of the HCAECs. Immunofluorescence showed the expression of VE-cadherin by HCAECs (A, B) and α-smooth muscle actin by SMCs (A). Green-labelled LDL-C particles were accumulated in the subendothelial space, as well as in the cytoplasm of HCAECs and SMCs (C). Activated monocytes were attached to HCAECs and found in the subendothelial area (G-I). Both HCAECs and SMCs released IL-1β, IL-6, IL-8, PDGF-BB, TGF-ß1, and VEGF. Scanning and transmission electron microscopy showed the HCAECs monolayer forming gap junctions and the SMCs (D-F) and transmigrating monocytes within the collagen matrix (G-I). Conclusions: In this work, we presented a novel, easily reproducible and functional in-vitro experimental model of atherosclerosis that has the potential to enable in-vitro sophisticated molecular and drug development studies.


1984 ◽  
Vol 15 (1-2) ◽  
pp. 66-68
Author(s):  
P. Weinling ◽  
S. Durant ◽  
P. Smets ◽  
R. Zalisz ◽  
D. Duval ◽  
...  

2018 ◽  
Vol 125 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Qian Xu ◽  
Weiwei Liu ◽  
Xiaoling Liu ◽  
Wuxiyar Otkur ◽  
Toshihiko Hayashi ◽  
...  

2016 ◽  
Vol 345 (2) ◽  
pp. 150-157 ◽  
Author(s):  
Yu-Tzu Chang ◽  
Chung-Li Shu ◽  
Jing-Yang Lai ◽  
Ching-Yu Lin ◽  
Chih-Pin Chuu ◽  
...  

1985 ◽  
Vol 5 (5) ◽  
pp. 1043-1050 ◽  
Author(s):  
R E Lanford ◽  
C Wong ◽  
J S Butel

The transforming potential and oncogenicity of a simian virus 40 (SV40) mutant affecting T-antigen (T-ag), SV40(cT)-3, was examined in an effort to dissect T-ag functions in transformation. SV40(cT)-3 has a point mutation at nucleotide 4434 that abolishes the transport of T-ag to the nucleus but does not affect its association with the cell surface. Transfection-transformation assays were performed with primary cells and established cell lines of mouse and rat origin. The efficiency of transformation for established cell lines by SV40(cT)-3 was comparable to that of wild-type SV40, indicating that transformation of established cell lines can occur in the absence of detectable amounts of nuclear T-ag. Transformation of primary mouse embryo fibroblasts by SV40(cT)-3 was markedly influenced by culture conditions; the relative transforming frequency was dramatically reduced in assays involving focus formation in low serum concentrations or anchorage-independent growth. Immunofluorescence tests revealed that the transformed mouse embryo fibroblasts partially transport the mutant cT-ag to the cell nucleus. Transformed cell lines induced by SV40(cT)-3 did not differ in growth properties from wild-type transformants. SV40(cT)-3 was completely defective for the transformation of primary baby rat kidney cells, a primary cell type unable to transport the mutant T-ag to the nucleus. The intracellular localization of cellular protein p53 was found to mimic T-ag distribution in all the transformants analyzed. The mutant virus was weakly oncogenic in vivo: the induction of tumors in newborn hamsters by SV40(cT)-3 was reduced in incidence and delayed in appearance in comparison to wild-type SV40. These observations suggest that cellular transformation is regulated by both nuclear and surface-associated forms of SV40 T-ag.


Sign in / Sign up

Export Citation Format

Share Document