scholarly journals Silver Nanoparticles Mediate Differential Responses in Keratinocytes and Fibroblasts during Skin Wound Healing

ChemMedChem ◽  
2010 ◽  
Vol 5 (3) ◽  
pp. 468-475 ◽  
Author(s):  
Xuelai Liu ◽  
Pui-yan Lee ◽  
Chi-ming Ho ◽  
Vincent C. H. Lui ◽  
Yan Chen ◽  
...  
Author(s):  
M. Dhoolappa ◽  
R.V. Prasad ◽  
K.T. Lakshmishree ◽  
S. Sundareshan ◽  
Milind Choudari ◽  
...  

Background: Tissue-engineered scaffolds for skin wound healing have undergone marvelous progress. The recognition that a three-dimensional scaffold more closely mimics the biomechanical environment of wounds and advancing knowledge of cell biology has led to the next-generation of engineered bioscaffolds with nanotechnology. A unifying approach is required for the translational success of bioscaffolds, involving clinicians, biologists and chemists. The decellularized materials were expanding their clinical utility due to high clinical results ahead of the ones with autografts. They are gradually gaining market space due to their ease of standardized production, constant availability for grafting and biomechanical/ biochemical advantage. Hence, the present study aimed to develop biobased decellularized extracellular matrix (dECM) impregnated with eco-friendly synthesized silver nanoparticles and then to evaluate their wound healing activity the excision wound model of rats. Methods: The dECM was prepared to achieve acellularity, intactness and adequate tensile strength. The same was confirmed by morphological (histology, scanning electron microscopy and Fourier transform infrared spectroscopy), mechanical (tensile strength) and biological (DNA quantification) analyses. Further, the dECM was impregnated with the eco-friendly synthesized keratin-chitosan-silver nanoparticles to produce ‘NanoBioscaffolds’ for extended biocompatibility and were evaluated for wound healing activity in rats. Result: The findings of the histopathology (H and E staining), immunohistochemistry (the proliferative activity of keratinocytes by Ki67 staining) and biochemical analysis (anti oxidative status by catalase estimation) revealed that wound healing activity was promoted by inducing proliferation and migration of the keratinocytes and detoxification of reactive oxygen species activity (ROS) in NanoBioscaffold treated group.


2018 ◽  
Vol 59 (1) ◽  
pp. 79
Author(s):  
Somaya Amer ◽  
Samir Nouh ◽  
Mahmoud Elkammar ◽  
Thanaa Shalaby ◽  
Ahmed Korittum

2019 ◽  
Vol 20 (15) ◽  
pp. 3679 ◽  
Author(s):  
Lin Chen ◽  
Alyne Simões ◽  
Zujian Chen ◽  
Yan Zhao ◽  
Xinming Wu ◽  
...  

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 457
Author(s):  
Andreu Blanquer ◽  
Jana Musilkova ◽  
Elena Filova ◽  
Johanka Taborska ◽  
Eduard Brynda ◽  
...  

Chronic wounds affect millions of patients worldwide, and it is estimated that this number will increase steadily in the future due to population ageing. The research of new therapeutic approaches to wound healing includes the development of nanofibrous meshes and the use of platelet lysate (PL) to stimulate skin regeneration. This study considers a combination of a degradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) membranes (NF) and fibrin loaded with various concentrations of PL aimed at the development of bioactive skin wound healing dressings. The cytocompatibility of the NF membranes, as well as the effect of PL, was evaluated in both monocultures and co-cultures of human keratinocytes and human endothelial cells. We determined that the keratinocytes were able to adhere on all the membranes, and their increased proliferation and differentiation was observed on the membranes that contained fibrin with at least 50% of PL (Fbg + PL) after 14 days. With respect to the co-culture experiments, the membranes with fibrin with 20% of PL were observed to enhance the metabolic activity of endothelial cells and their migration, and the proliferation and differentiation of keratinocytes. The results suggest that the newly developed NF combined with fibrin and PL, described in the study, provides a promising dressing for chronic wound healing purposes.


Author(s):  
Alexandr Basov ◽  
Liliya Fedulova ◽  
Ekaterina Vasilevskaya ◽  
Ekaterina Trofimova ◽  
Nataliya Murashova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document