scholarly journals The Effect of a Polyester Nanofibrous Membrane with a Fibrin-Platelet Lysate Coating on Keratinocytes and Endothelial Cells in a Co-Culture System

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 457
Author(s):  
Andreu Blanquer ◽  
Jana Musilkova ◽  
Elena Filova ◽  
Johanka Taborska ◽  
Eduard Brynda ◽  
...  

Chronic wounds affect millions of patients worldwide, and it is estimated that this number will increase steadily in the future due to population ageing. The research of new therapeutic approaches to wound healing includes the development of nanofibrous meshes and the use of platelet lysate (PL) to stimulate skin regeneration. This study considers a combination of a degradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) membranes (NF) and fibrin loaded with various concentrations of PL aimed at the development of bioactive skin wound healing dressings. The cytocompatibility of the NF membranes, as well as the effect of PL, was evaluated in both monocultures and co-cultures of human keratinocytes and human endothelial cells. We determined that the keratinocytes were able to adhere on all the membranes, and their increased proliferation and differentiation was observed on the membranes that contained fibrin with at least 50% of PL (Fbg + PL) after 14 days. With respect to the co-culture experiments, the membranes with fibrin with 20% of PL were observed to enhance the metabolic activity of endothelial cells and their migration, and the proliferation and differentiation of keratinocytes. The results suggest that the newly developed NF combined with fibrin and PL, described in the study, provides a promising dressing for chronic wound healing purposes.

Author(s):  
Letícia Fuganti CAMPOS ◽  
Eliane TAGLIARI ◽  
Thais Andrade Costa CASAGRANDE ◽  
Lúcia de NORONHA ◽  
Antônio Carlos L. CAMPOS ◽  
...  

ABSTRACT Background: Chronic wounds in patients with Diabetes Mellitus often become incurable due to prolonged and excessive production of inflammatory cytokines. The use of probiotics modifies the intestinal microbiota and modulates inflammatory reactions. Aim: To evaluate the influence of perioperative supplementation with probiotics in the cutaneous healing process in diabetic rats. Methods: Forty-six rats were divided into four groups (C3, P3, C10, P10) according to the treatment (P=probiotic or C=control, both orally administered) and day of euthanasia, 3rd or 10th postoperative days. All rats were induced to Diabetes Mellitus 72 h before starting the experiment with alloxan. Supplementation was initiated five days before the incision and maintained until euthanasia. Scalpel incision was guided by a 2x2 cm mold and the wounds were left to heal per second-intention. The wounds were digitally measured. Collagen densitometry was done with Picrosirius Red staining. Histological parameters were analyzed by staining by H&E. Results: The contraction of the wound was faster in the P10 group which resulted in a smaller scar area (p=0.011). There was an increase in type I collagen deposition from the 3rd to the 10th postoperative day in the probiotic groups (p=0.016), which did not occur in the control group (p=0.487). The histological analysis showed a better degree of healing in the P10 group (p=0.005), with fewer polymorphonuclear (p<0.001) and more neovessels (p=0.001). Conclusions: Perioperative supplementation of probiotics stimulates skin wound healing in diabetic rats, possibly due to attenuation of the inflammatory response and increased neovascularization and type I collagen deposition.


2020 ◽  
Vol 8 ◽  
Author(s):  
Pengcheng Xu ◽  
Yaguang Wu ◽  
Lina Zhou ◽  
Zengjun Yang ◽  
Xiaorong Zhang ◽  
...  

Abstract Background Autologous platelet-rich plasma (PRP) has been suggested to be effective for wound healing. However, evidence for its use in patients with acute and chronic wounds remains insufficient. The aims of this study were to comprehensively examine the effectiveness, synergy and possible mechanism of PRP-mediated improvement of acute skin wound repair. Methods Full-thickness wounds were made on the back of C57/BL6 mice. PRP or saline solution as a control was administered to the wound area. Wound healing rate, local inflammation, angiogenesis, re-epithelialization and collagen deposition were measured at days 3, 5, 7 and 14 after skin injury. The biological character of epidermal stem cells (ESCs), which reflect the potential for re-epithelialization, was further evaluated in vitro and in vivo. Results PRP strongly improved skin wound healing, which was associated with regulation of local inflammation, enhancement of angiogenesis and re-epithelialization. PRP treatment significantly reduced the production of inflammatory cytokines interleukin-17A and interleukin-1β. An increase in the local vessel intensity and enhancement of re-epithelialization were also observed in animals with PRP administration and were associated with enhanced secretion of growth factors such as vascular endothelial growth factor and insulin-like growth factor-1. Moreover, PRP treatment ameliorated the survival and activated the migration and proliferation of primary cultured ESCs, and these effects were accompanied by the differentiation of ESCs into adult cells following the changes of CD49f and keratin 10 and keratin 14. Conclusion PRP improved skin wound healing by modulating inflammation and increasing angiogenesis and re-epithelialization. However, the underlying regulatory mechanism needs to be investigated in the future. Our data provide a preliminary theoretical foundation for the clinical administration of PRP in wound healing and skin regeneration.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Chenlong Yi ◽  
Weihua Wu ◽  
Dong Zheng ◽  
Guangying Peng ◽  
Haoyue Huang ◽  
...  

AbstractWound healing is a multistep phenomenon that relies on complex interactions between various cell types. Calpains are a well-known family of calcium-dependent cysteine proteases that regulate several processes, including cellular adhesion, proliferation, and migration, as well as inflammation and angiogenesis. CAPNS1, the common regulatory subunit of Calpain-1 and 2, is indispensable for catalytic subunit stabilization and activity. Calpain inhibition has been shown to reduce organ damage in various disease models. Here, we report that endothelial calpain-1/2 is crucially involved in skin wound healing. Using a mouse genetic model where Capns1 is deleted only in endothelial cells, we showed that calpain-1/2 disruption is associated with reduced injury-activated inflammation, reduced CD31+ blood vessel density, and delayed wound healing. Moreover, in cultured HUVECs, inhibition of calpain reduced TNF-α-induced proliferation, migration, and tube formation. Deletion of Capns1 was associated with elevated levels of IκB and downregulation of β-catenin expression in endothelial cells. These observations delineate a novel mechanistic role for calpain in the crosstalk between inflammation and angiogenesis during skin repair.


2020 ◽  
Vol 869 ◽  
pp. 172894 ◽  
Author(s):  
Raffaella Belvedere ◽  
Emanuela Pessolano ◽  
Amalia Porta ◽  
Alessandra Tosco ◽  
Luca Parente ◽  
...  

2019 ◽  
Vol 116 (19) ◽  
pp. 9443-9452 ◽  
Author(s):  
Dongqing Li ◽  
Lara Kular ◽  
Manika Vij ◽  
Eva K. Herter ◽  
Xi Li ◽  
...  

An increasing number of studies reveal the importance of long noncoding RNAs (lncRNAs) in gene expression control underlying many physiological and pathological processes. However, their role in skin wound healing remains poorly understood. Our study focused on a skin-specific lncRNA, LOC105372576, whose expression was increased during physiological wound healing. In human nonhealing wounds, however, its level was significantly lower compared with normal wounds under reepithelialization. We characterized LOC105372576 as a nuclear-localized, RNAPII-transcribed, and polyadenylated lncRNA. In keratinocytes, its expression was induced by TGF-β signaling. Knockdown of LOC105372576 and activation of its endogenous transcription, respectively, reduced and increased the motility of keratinocytes and reepithelialization of human ex vivo skin wounds. Therefore, LOC105372576 was termed “wound and keratinocyte migration-associated lncRNA 1” (WAKMAR1). Further study revealed that WAKMAR1 regulated a network of protein-coding genes important for cell migration, most of which were under the control of transcription factor E2F1. Mechanistically, WAKMAR1 enhanced E2F1 expression by interfering with E2F1 promoter methylation through the sequestration of DNA methyltransferases. Collectively, we have identified a lncRNA important for keratinocyte migration, whose deficiency may be involved in the pathogenesis of chronic wounds.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 952
Author(s):  
Marija Petkovic ◽  
Michelle Vang Mouritzen ◽  
Biljana Mojsoska ◽  
Håvard Jenssen

Cutaneous wound healing is a vital biological process that aids skin regeneration upon injury. Wound healing failure results from persistent inflammatory conditions observed in diabetes, or autoimmune diseases like psoriasis. Chronic wounds are incurable due to factors like poor oxygenation, aberrant function of peripheral sensory nervature, inadequate nutrients and blood tissue supply. The most significant hallmark of chronic wounds is heavily aberrant immune skin function. The immune response in humans relies on a large network of signalling molecules and their interactions. Research studies have reported on the dual role of host defence peptides (HDPs), which are also often called antimicrobial peptides (AMPs). Their duality reflects their potential for acting as antibacterial peptides, and as immunodulators that assist in modulating several biological signalling pathways related to processes such as wound healing, autoimmune disease, and others. HDPs may differentially control gene regulation and alter the behaviour of epithelial and immune cells, resulting in modulation of immune responses. In this review, we shed light on the understanding and most recent advances related to molecular mechanisms and immune modulatory features of host defence peptides in human skin wound healing. Understanding their functional role in skin immunity may further inspire topical treatments for chronic wounds.


2018 ◽  
Vol 38 (3) ◽  
Author(s):  
Wenxin Bian ◽  
Buliang Meng ◽  
Xiaojie Li ◽  
Siyuan Wang ◽  
Xiaoqing Cao ◽  
...  

Nowadays, the number of chronic trauma cases caused by a variety of factors such as the world’s population-ageing and chronic diseases is increasing steadily, and thus effective treatment for chronic wounds has become a severe clinical challenge, which also burdens the patient both physically and financially. Therefore, it is urgent to develop new drugs to accelerate the healing of wounds. Bioactive peptides, which are relatively low cost, easy to produce, store and transport, have become an excellent choice. In this research, we identified a novel peptide OA-GL21, with an amino acid sequence of ‘GLLSGHYGRVVSTQSGHYGRG’, from the skin secretions of Odorrana andersonii. Our results showed that OA-GL21 exerted the ability to promote wound healing of human keratinocytes (HaCaT) and human fibroblasts in a dose- and time-denpendent manner. However, OA-GL21 had no significant effect on the proliferation of these two cells. Significantly, OA-GL21 showed obvious ability to promote wound healing in the full-thickness skin wound model in dose- and scar-free manners. Further studies showed that OA-GL21 had no direct antibacterial, hemolytic, and acute toxic activity; it had weak antioxidant activities but high stability. In conclusion, this research proved the promoting effects of OA-GL21 on cellular and animal wounds, and thus provided a new peptide template for the development of wound-repairing drugs.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Sajina Shakya ◽  
Yan Wang ◽  
Judith A. Mack ◽  
Edward V. Maytin

Ulcers and chronic wounds are a particularly common problem in diabetics and are associated with hyperglycemia. In this targeted review, we summarize evidence suggesting that defective wound healing in diabetics is causally linked, at least in part, to hyperglycemia-induced changes in the status of hyaluronan (HA) that resides in the pericellular coat (glycocalyx) of endothelial cells of small cutaneous blood vessels. Potential mechanisms through which exposure to high glucose levels causes a loss of the glycocalyx on the endothelium and accelerates the recruitment of leukocytes, creating a proinflammatory environment, are discussed in detail. Hyperglycemia also affects other cells in the immediate perivascular area, including pericytes and smooth muscle cells, through exposure to increased cytokine levels and through glucose elevations in the interstitial fluid. Possible roles of newly recognized, cross-linked forms of HA, and interactions of a major HA receptor (CD44) with cytokine/growth factor receptors during hyperglycemia, are also discussed.


2012 ◽  
Vol 90 (3) ◽  
pp. 497-503 ◽  
Author(s):  
Yoshiharu Takayama ◽  
Reiji Aoki

Skin wound healing is a complex biological process that requires the regulation of different cell types, including immune cells, keratinocytes, fibroblasts, and endothelial cells. It consists of 5 stages: hemostasis, inflammation, granulation tissue formation, re-epithelialization, and wound remodeling. While inflammation is essential for successful wound healing, prolonged or excess inflammation can result in nonhealing chronic wounds. Lactoferrin, an iron-binding glycoprotein secreted from glandular epithelial cells into body fluids, promotes skin wound healing by enhancing the initial inflammatory phase. Lactoferrin also exhibits anti-inflammatory activity that neutralizes overabundant immune response. Accumulating evidence suggests that lactoferrin directly promotes both the formation of granulation tissue and re-epithelialization. Lactoferrin stimulates the proliferation and migration of fibroblasts and keratinocytes and enhances the synthesis of extracellular matrix components, such as collagen and hyaluronan. In an in vitro model of wound contraction, lactoferrin promoted fibroblast-mediated collagen gel contraction. These observations indicate that lactoferrin supports multiple biological processes involved in wound healing.


2016 ◽  
Vol 162 (1) ◽  
pp. 138-145 ◽  
Author(s):  
N. S. Sergeeva ◽  
Ya. D. Shanskii ◽  
I. K. Sviridova ◽  
P. A. Karalkin ◽  
V. A. Kirsanova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document