Genetic expression profiles and biologic pathway alterations in head and neck squamous cell carcinoma

Cancer ◽  
2005 ◽  
Vol 104 (6) ◽  
pp. 1113-1128 ◽  
Author(s):  
Peter Choi ◽  
Chu Chen
2015 ◽  
Vol 47 (4) ◽  
pp. 1249-1256 ◽  
Author(s):  
KAZUYA YATA ◽  
LEVENT BEKIR BEDER ◽  
SHUNJI TAMAGAWA ◽  
MUNEKI HOTOMI ◽  
YOSHIHIKO HIROHASHI ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Carolina Salazar-Ruales ◽  
Jessica-Viviana Arguello ◽  
Andrés López-Cortés ◽  
Alejandro Cabrera-Andrade ◽  
Jennyfer M. García-Cárdenas ◽  
...  

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer with the highest incidence worldwide. HNSCC is often diagnosed at advanced stages, incurring significant high mortality and morbidity. The use of saliva, as a noninvasive tool for the diagnosis of cancer, has recently increased. Salivary microRNAs (miRNAs) have emerged as a promising molecular tool for early diagnosis of HNSCC. The aim was to identify the differential expression of salivary miRNAs associated with HNSCC in the high altitude mestizo Ecuadorian population. Using PCR Arrays, miR-122-5p, miR-92a-3p, miR-124-3p, miR-205-5p, and miR-146a-5p were found as the most representative ones. Subsequently, miRNAs expression was confirmed in saliva samples from 108 cases and 108 controls. miR-122-5p, miR-92a-3p, miR-124-3p, and miR-146a-5p showed significant statistical difference between cases and controls with areas under the curve (AUC) of 0.73 (p < 0.001), 0.70 (p < 0.001), 0.71 (p = 0.002), and 0.66 (p = 0.008), respectively. miRNAs were also deregulated in between HNSCC localizations. A differentiated expression of miR-122-5p between oral cancer and oropharynx cancer (AUC of 0.96 p = 0.01) was found: miR-124-3p between larynx and pharynx (AUC = 0.97, p < 0.01) and miR-146a-5p between larynx, oropharynx, and oral cavity (AUC = 0.96, p = 0.01). Moreover, miR-122-5p, miR-124-3p, miR-205-5p, and miR-146a-5p could differentiate between HPV+ and HPV- (p=0.004). Finally, the expression profiles of the five miRNAs were evaluated to discriminate HNSCC patient’s tumor stages (TNM 2-4). miR-122-5p differentiates TNM 2 and 3 (p = 0.002, AUC = 0.92), miR-124-3p TNM 2, 3, and 4 (p < 0.001, AUC = 98), miR-146a-5p TNM 2 and 3 (p < 0.001, AUC = 0.97), and miR-92a-3p TNM 3 (p < 0.001, AUC = 0.99). Taken together, these findings show that altered expression of miRNAs could be used as biomarkers for HNSCC diagnosis in the high altitude mestizo Ecuadorian population.


Head & Neck ◽  
2009 ◽  
Vol 31 (5) ◽  
pp. 642-654 ◽  
Author(s):  
Latha Ramdas ◽  
Uma Giri ◽  
Cheryl L. Ashorn ◽  
Kevin R. Coombes ◽  
Adel El-Naggar ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Tingting Zhang ◽  
Xueqin Zhu ◽  
Qiang Sun ◽  
Xing Qin ◽  
Zhen Zhang ◽  
...  

Constituents of tobacco that can cause DNA adduct formation and oxidative stress are implicated in the development of head and neck squamous cell carcinoma (HNSCC). However, there are few studies on the mechanism(s) that underlie tobacco-associated HNSCC. Here, we used a model in which tumors were induced in rats using 4-nitroquinoline 1-oxide (4NQO), which mimicked tobacco-related HNSCC, and analyzed the expression profiles of microRNAs and mRNAs. Our results indicated that 57 miRNAs and 474 mRNA/EST transcripts exhibited differential expression profiles between tumor and normal tongue tissues. In tumor tissue, the expression levels of rno-miR-30 family members (rno-miR-30a, rno-miR-30a-3p, rno-miR-30b-5p, rno-miR-30c, rno-miR-30d, rno-miR-30e and rno-miR-30e-3p) were only 8% to 37% of those in the control group. The GO terms enrichment analysis of the differentially expressed miRNAs indicated that oxidation reduction was the most enriched process. Low expression of miR-30 family members in human HNSCC cell lines and tissues was validated by qPCR. The results revealed that the expression of miR-30b-5p and miR-30e-5p was significantly decreased in the TCGA HNSCC dataset and validation datasets, and this decrease in expression further distinguishes HNSCC associated with tobacco use from other subtypes of HNSCC. CCK8, colony formation, transwell migration and HNSCC xenograft tumor assays indicated that miR-30b-5p or miR-30e-5p inhibited proliferation, migration and invasion in vitro, and miR-30b-5p suppressed tumor growth in vivo. Moreover, we uncovered that KRAS might be the potential target gene of miR-30e-5p or miR-30b-5p. Thus, our data clearly showed that decreased expression of miR-30e-5p or miR-30b-5p may play a crucial role in cancer development, especially that of tobacco-induced HNSCC, and may be a novel candidate biomarker and target for this HNSCC subtype.


Head & Neck ◽  
2010 ◽  
Vol 33 (6) ◽  
pp. 786-791 ◽  
Author(s):  
Yuemeng Dai ◽  
Cheng-hui Xie ◽  
John P. Neis ◽  
Chun-Yang Fan ◽  
Emre Vural ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document