Vestibular ganglion neurons survive hair cell defects in jerker, shaker, and varitint-waddler mutants and downregulate calretinin expression

2007 ◽  
Vol 504 (4) ◽  
pp. 418-426 ◽  
Author(s):  
Mario Čabraja ◽  
Jörg Bäurle
2014 ◽  
Vol 143 (4) ◽  
pp. 481-497 ◽  
Author(s):  
Geoffrey C. Horwitz ◽  
Jessica R. Risner-Janiczek ◽  
Jeffrey R. Holt

The hyperpolarization-activated, cyclic nucleotide–sensitive current, Ih, is present in vestibular hair cells and vestibular ganglion neurons, and is required for normal balance function. We sought to identify the molecular correlates and functional relevance of Ih in vestibular ganglion neurons. Ih is carried by channels consisting of homo- or heteromeric assemblies of four protein subunits from the Hcn gene family. The relative expression of Hcn1–4 mRNA was examined using a quantitative reverse transcription PCR (RT-PCR) screen. Hcn2 was the most highly expressed subunit in vestibular neuron cell bodies. Immunolocalization of HCN2 revealed robust expression in cell bodies of all vestibular ganglion neurons. To characterize Ih in vestibular neuron cell bodies and at hair cell–afferent synapses, we developed an intact, ex vivo preparation. We found robust physiological expression of Ih in 89% of cell bodies and 100% of calyx terminals. Ih was significantly larger in calyx terminals than in cell bodies; however, other biophysical characteristics were similar. Ih was absent in calyces lacking Hcn1 and Hcn2, but small Ih was still present in cell bodies, which suggests expression of an additional subunit, perhaps Hcn4. To determine the contributions of hair cell mechanotransduction and Ih to the firing patterns of calyx terminals, we recorded action potentials in current-clamp mode. Mechanotransduction currents were modulated by hair bundle defection and application of calcium chelators to disrupt tip links. Ih activity was modulated using ZD7288 and cAMP. We found that both hair cell transduction and Ih contribute to the rate and regularity of spontaneous action potentials in the vestibular afferent neurons. We propose that modulation of Ih in vestibular ganglion neurons may provide a mechanism for modulation of spontaneous activity in the vestibular periphery.


2015 ◽  
Vol 42 (10) ◽  
pp. 2867-2877 ◽  
Author(s):  
Christophe B. Michel ◽  
Christine Azevedo Coste ◽  
Gilles Desmadryl ◽  
Jean‐Luc Puel ◽  
Jerome Bourien ◽  
...  

2019 ◽  
Vol 39 (27) ◽  
pp. 5284-5298 ◽  
Author(s):  
Hanna E. Sherrill ◽  
Philippe Jean ◽  
Elizabeth C. Driver ◽  
Tessa R. Sanders ◽  
Tracy S. Fitzgerald ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0183773 ◽  
Author(s):  
Tian Yang ◽  
Jennifer Kersigo ◽  
Shu Wu ◽  
Bernd Fritzsch ◽  
Alexander G. Bassuk

2016 ◽  
Vol 116 (2) ◽  
pp. 503-521 ◽  
Author(s):  
Ariel E. Hight ◽  
Radha Kalluri

The vestibular nerve is characterized by two broad groups of neurons that differ in the timing of their interspike intervals; some fire at highly regular intervals, whereas others fire at highly irregular intervals. Heterogeneity in ion channel properties has been proposed as shaping these firing patterns (Highstein SM, Politoff AL. Brain Res 150: 182–187, 1978; Smith CE, Goldberg JM. Biol Cybern 54: 41–51, 1986). Kalluri et al. ( J Neurophysiol 104: 2034–2051, 2010) proposed that regularity is controlled by the density of low-voltage-activated potassium currents ( IKL). To examine the impact of IKL on spike timing regularity, we implemented a single-compartment model with three conductances known to be present in the vestibular ganglion: transient sodium ( gNa), low-voltage-activated potassium ( gKL), and high-voltage-activated potassium ( gKH). Consistent with in vitro observations, removing gKL depolarized resting potential, increased input resistance and membrane time constant, and converted current step-evoked firing patterns from transient (1 spike at current onset) to sustained (many spikes). Modeled neurons were driven with a time-varying synaptic conductance that captured the random arrival times and amplitudes of glutamate-driven synaptic events. In the presence of gKL, spiking occurred only in response to large events with fast onsets. Models without gKL exhibited greater integration by responding to the superposition of rapidly arriving events. Three synaptic conductance were modeled, each with different kinetics to represent a variety of different synaptic processes. In response to all three types of synaptic conductance, models containing gKL produced spike trains with irregular interspike intervals. Only models lacking gKL when driven by rapidly arriving small excitatory postsynaptic currents were capable of generating regular spiking.


2022 ◽  
Author(s):  
Daniel Bronson ◽  
Radha Kalluri

Vestibular efferent neurons play an important role in shaping vestibular afferent excitability and accordingly, on the information encoded by their spike patterns. Efferent-modulation is linked to muscarinic signaling cascades that affect ion channel conductances, most notably low-voltage gated potassium channels such as KCNQ. Here we tested and found that muscarinic signaling cascades also modulate hyperpolarization-activated cyclic-nucleotide gated channels (HCN). HCN channels play a key role in controlling spike-timing regularity and a non-chemical form of transmission between type I hair cells and vestibular afferents. The impact of cholinergic efferent input on HCN channels was assessed using voltage-clamp methods, which measure currents in the disassociated cell bodies of vestibular ganglion neurons (VGN). Membrane properties in VGN were characterized before and after administration of the muscarinic acetylcholine receptor (mAChR) agonist Oxotremorine-M (Oxo-M). We found that Oxo-M shifted the voltage-activation range of HCN channels in the positive direction by 4.1 +/- 1.1 mV, which more than doubled the available current when held near rest at -60 mV (a 184 +/- 90.1% increase, n=19). This effect was not blocked by pre-treating the cells with a KCNQ channel blocker, linopirdine, which suggests that this effect is not dependent on KCNQ currents. We also found that HCN channel properties in the baseline condition and sensitivity to mAChR activation depended on cell size and firing patterns. Large-bodied neurons with onset firing patterns had the most depolarized activation range and least sensitivity to mAChR activation. Together, our results highlight the complex and dynamic regulation of HCN channels in VGN.


Sign in / Sign up

Export Citation Format

Share Document