Correlated anatomical and physiological studies of the growth of the nervous system of Amphibia. IV. Rates of proliferation and differentiation in the central nervous system of Amblystoma

1924 ◽  
Vol 37 (1) ◽  
pp. 71-120 ◽  
Author(s):  
G. E. Coghill
2013 ◽  
Vol 12 (5) ◽  
pp. 104-118 ◽  
Author(s):  
A. B. Salmina ◽  
N. A. Yauzina ◽  
N. V. Kuvacheva ◽  
M. M. Petrova ◽  
T. Ye. Taranushenko ◽  
...  

The review summarizes current data on the role of insulin in the regulation of t glucose metabolism in the central nervous system at physiologic and pathologic conditions. For many years, the brain has been considered as an insulin-independent organ which utilizes glucose without insulin activity. However, it is become clear now that insulin not only regulates glucose transport and metabolism, but also has modulatory efftects in impact on excitability, proliferation and differentiation of brain progenitor cells, synaptic plasticity and memory formation, secretion of neurotransmitters, apoptosis. We have critically reviewed literature information and our own data on the role of insulin and insulin resistance in neuron-glia metabolic coupling, regulation of NAD+ metabolism and action of NAdependent enzymes, neurogenesis, brain development in (patho)physiological conditions. The paper clarifies interrelations between alterations in glucose homeostasis, development of insulin resistance and development of neurodegeneration (Alzheimer's disease and Parkinson's disease), autism, stroke, and depression. We discuss the application of novel molecular markers of insulin resistance (adipokines, α-hydroxybutyrate, BDNF, insulin-regulated aminopeptidase, provasopressin) and molecular targets for diagnostics and treatment of brain disorders associated with insulin resistance.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Bruno P. Carreira ◽  
Caetana M. Carvalho ◽  
Inês M. Araújo

The finding that neural stem cells (NSCs) are able to divide, migrate, and differentiate into several cellular types in the adult brain raised a new hope for restorative neurology. Nitric oxide (NO), a pleiotropic signaling molecule in the central nervous system (CNS), has been described to be able to modulate neurogenesis, acting as a pro- or antineurogenic agent. Some authors suggest that NO is a physiological inhibitor of neurogenesis, while others described NO to favor neurogenesis, particularly under inflammatory conditions. Thus, targeting the NO system may be a powerful strategy to control the formation of new neurons. However, the exact mechanisms by which NO regulates neural proliferation and differentiation are not yet completely clarified. In this paper we will discuss the potential interest of the modulation of the NO system for the treatment of neurodegenerative diseases or other pathological conditions that may affect the CNS.


Sign in / Sign up

Export Citation Format

Share Document