Evaluation of expanded gamut software solutions for spot color reproduction

2019 ◽  
Vol 45 (2) ◽  
pp. 315-324
Author(s):  
Abhay Sharma ◽  
John Seymour
2012 ◽  
Vol 262 ◽  
pp. 74-79
Author(s):  
Hai Su ◽  
Yao Hua Yi ◽  
Ju Hua Liu ◽  
Min Jing Miao

The accurate reproduction of spot color is a difficult problem in inkjet digital proofing because of the properties of high saturation and out of the gamut of the spot color. A spot color matching method based on preserved high saturation is presented in this paper. The lightness is dealt with compression transform and modification, with the hue angle of the spot color unchanged. By this means, the precise reproduction of saturation of the spot color can be guaranteed to the maximum extent. When applying our method to the spot color matching process, the experiment result shows that, not only the property of high saturation is well preserved, but also the accuracy of spot color reproduction is improved.


1946 ◽  
Vol 2 (1) ◽  
pp. 45-49
Author(s):  
J. Arthur Ball
Keyword(s):  

2020 ◽  
Vol 2020 (15) ◽  
pp. 197-1-197-7
Author(s):  
Alastair Reed ◽  
Vlado Kitanovski ◽  
Kristyn Falkenstern ◽  
Marius Pedersen

Spot colors are widely used in the food packaging industry. We wish to add a watermark signal within a spot color that is readable by a Point Of Sale (POS) barcode scanner which typically has red illumination. Some spot colors such as blue, black and green reflect very little red light and are difficult to modulate with a watermark at low visibility to a human observer. The visibility measurements that have been made with the Digimarc watermark enables the selection of a complementary color to the base color which can be detected by a POS barcode scanner but is imperceptible at normal viewing distance.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 354
Author(s):  
Tim Tofan ◽  
Rimantas Stonkus ◽  
Raimondas Jasevičius

The aim of this research is to investigate related effect of dyeability to linen textiles related to different printing parameters. The study investigated the change in color characteristics when printing on linen fabrics with an inkjet MIMAKI Tx400-1800D printer with pigmented TP 250 inks. The dependence of color reproduction on linen fabrics on the number of print head passes, number of ink layers to be coated, linen fabric density, and different types of linen fabric was investigated. All this affects the quality of print and its mechanical properties. The change in color characteristics on different types of linen fabrics was determined experimentally. We determine at which print settings the most accurate color reproduction can be achieved on different linen fabrics. The difference between the highest and the lowest possible number of head passages was investigated. The possibilities of reproducing different linen fabric colors were determined.


Author(s):  
Xiaochun Wang ◽  
Chen Chen ◽  
Jiangping Yuan ◽  
Guangxue Chen

Full-color three-dimensional (3D) printing technology is a powerful process to manufacture intelligent customized colorful objects with improved surface qualities; however, poor surface color optimization methods are the main impeding factors for its commercialization. As such, the paper explored the correlation between microstructure and color reproduction, then an assessment and prediction method of color optimization based on microscopic image analysis was proposed. The experimental models were divided into 24-color plates and 4-color cubes printed by ProJet 860 3D printer, then impregnated according to preset parameters, at last measured by a spectrophotometer and observed using both a digital microscope and a scanning electron microscope. The results revealed that the samples manifested higher saturation and smaller chromatic aberration ([Formula: see text]) after postprocessing. Moreover, the brightness of the same color surface increased with the increasing soaked surface roughness. Further, reduction in surface roughness, impregnation into surface pores, and enhancement of coating transparency effectively improved the accuracy of color reproduction, which could be verified by the measured values. Finally, the chromatic aberration caused by positioning errors on different faces of the samples was optimized, and the value of [Formula: see text] for a black cube was reduced from 8.12 to 0.82, which is undetectable to human eyes.


Sign in / Sign up

Export Citation Format

Share Document