An On-Chip Method for Long-Term Growth and Real-Time Imaging of Brain Organoids

2018 ◽  
Vol 81 (1) ◽  
pp. e62 ◽  
Author(s):  
Eyal Karzbrun ◽  
Rami Yair Tshuva ◽  
Orly Reiner
Keyword(s):  
2013 ◽  
Vol 37 ◽  
pp. 4085-4092 ◽  
Author(s):  
Junzo Kasahara ◽  
Shinji Ito ◽  
Tomohiro Fujiwara ◽  
Yoko Hasada ◽  
Kayoko Tsuruga ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 675 ◽  
Author(s):  
Yi Zhao ◽  
Ranjith Kankala ◽  
Shi-Bin Wang ◽  
Ai-Zheng Chen

With advantageous features such as minimizing the cost, time, and sample size requirements, organ-on-a-chip (OOC) systems have garnered enormous interest from researchers for their ability for real-time monitoring of physical parameters by mimicking the in vivo microenvironment and the precise responses of xenobiotics, i.e., drug efficacy and toxicity over conventional two-dimensional (2D) and three-dimensional (3D) cell cultures, as well as animal models. Recent advancements of OOC systems have evidenced the fabrication of ‘multi-organ-on-chip’ (MOC) models, which connect separated organ chambers together to resemble an ideal pharmacokinetic and pharmacodynamic (PK-PD) model for monitoring the complex interactions between multiple organs and the resultant dynamic responses of multiple organs to pharmaceutical compounds. Numerous varieties of MOC systems have been proposed, mainly focusing on the construction of these multi-organ models, while there are only few studies on how to realize continual, automated, and stable testing, which still remains a significant challenge in the development process of MOCs. Herein, this review emphasizes the recent advancements in realizing long-term testing of MOCs to promote their capability for real-time monitoring of multi-organ interactions and chronic cellular reactions more accurately and steadily over the available chip models. Efforts in this field are still ongoing for better performance in the assessment of preclinical attributes for a new chemical entity. Further, we give a brief overview on the various biomedical applications of long-term testing in MOCs, including several proposed applications and their potential utilization in the future. Finally, we summarize with perspectives.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Kais Loukil ◽  
Nader Ben Amor ◽  
Mohamed Abid ◽  
Jean Philippe Diguet

The emergence of mobile and battery operated multimedia systems and the diversity of supported applications mount new challenges in terms of design efficiency of these systems which must provide a maximum application quality of service (QoS) in the presence of a dynamically varying environment. These optimization problems cannot be entirely solved at design time and some efficiency gains can be obtained at run-time by means of self-adaptivity. In this paper, we propose a new cross-layer hardware (HW)/software (SW) adaptation solution for embedded mobile systems. It supports application QoS under real-time and lifetime constraints via coordinated adaptation in the hardware, operating system (OS), and application layers. Our method relies on an original middleware solution used on both global and local managers. The global manager (GM) handles large, long-term variations whereas the local manager (LM) is used to guarantee real-time constraints. The GM acts in three layers whereas the LM acts in application and OS layers only. The main role of GM is to select the best configuration for each application to meet the constraints of the system and respect the preferences of the user. The proposed approach has been applied to a 3D graphics application and successfully implemented on an Altera FPGA.


Sign in / Sign up

Export Citation Format

Share Document