scholarly journals Modelling photoionisation in isocytosine: potential formation of longer‐lived excited state cations in its keto form

ChemPhysChem ◽  
2021 ◽  
Author(s):  
Javier Segarra-Martí ◽  
Michael J. Bearpark
ChemPhysChem ◽  
2021 ◽  
Vol 22 (21) ◽  
pp. 2140-2140
Author(s):  
Javier Segarra‐Martí ◽  
Michael J. Bearpark

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 843
Author(s):  
Khanittha Kerdpol ◽  
Rathawat Daengngern ◽  
Chanchai Sattayanon ◽  
Supawadee Namuangruk ◽  
Thanyada Rungrotmongkol ◽  
...  

The effect of microsolvation on excited-state proton transfer (ESPT) reaction of 3-hydroxyflavone (3HF) and its inclusion complex with γ-cyclodextrin (γ-CD) was studied using computational approaches. From molecular dynamics simulations, two possible inclusion complexes formed by the chromone ring (C-ring, Form I) and the phenyl ring (P-ring, Form II) of 3HF insertion to γ-CD were observed. Form II is likely more stable because of lower fluctuation of 3HF inside the hydrophobic cavity and lower water accessibility to the encapsulated 3HF. Next, the conformation analysis of these models in the ground (S0) and the first excited (S1) states was carried out by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, respectively, to reveal the photophysical properties of 3HF influenced by the γ-CD. The results show that the intermolecular hydrogen bonding (interHB) between 3HF and γ-CD, and intramolecular hydrogen bonding (intraHB) within 3HF are strengthened in the S1 state confirmed by the shorter interHB and intraHB distances and the red-shift of O–H vibrational modes involving in the ESPT process. The simulated absorption and emission spectra are in good agreement with the experimental data. Significantly, in the S1 state, the keto form of 3HF is stabilized by γ-CD, explaining the increased quantum yield of keto emission of 3HF when complexing with γ-CD in the experiment. In the other word, ESPT of 3HF is more favorable in the γ-CD hydrophobic cavity than in aqueous solution.


Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


Author(s):  
E. G. Rightor

Core edge spectroscopy methods are versatile tools for investigating a wide variety of materials. They can be used to probe the electronic states of materials in bulk solids, on surfaces, or in the gas phase. This family of methods involves promoting an inner shell (core) electron to an excited state and recording either the primary excitation or secondary decay of the excited state. The techniques are complimentary and have different strengths and limitations for studying challenging aspects of materials. The need to identify components in polymers or polymer blends at high spatial resolution has driven development, application, and integration of results from several of these methods.


2020 ◽  
Vol 22 (31) ◽  
pp. 17659-17667 ◽  
Author(s):  
Antonio H. da S. Filho ◽  
Gabriel L. C. de Souza
Keyword(s):  

In this work, ground and excited-state properties were used as descriptors for probing mechanisms as well as to assess potential alternatives for tackling the elimination of per- and poly-fluoroalkyl substances (PFAS).


Author(s):  
Weidong Qiu ◽  
Xinyi Cai ◽  
Mengke Li ◽  
Liangying Wang ◽  
Yanmei He ◽  
...  

Dynamic adjustment of emission behaviours by controlling the extent of twisted intramolecular charge transfer character in excited state.


Sign in / Sign up

Export Citation Format

Share Document