In Vivo Whole‐Nerve Electrophysiology Setup, Action Potential Recording, and Data Analyses in a Rodent Model

2021 ◽  
Vol 1 (11) ◽  
Author(s):  
Diane Zhao ◽  
Negin Behzadian ◽  
David Yeomans ◽  
T. Anthony Anderson
2020 ◽  
Vol 93 (1) ◽  
Author(s):  
Sharon Sun ◽  
Jorge Delgado ◽  
Negin Behzadian ◽  
David Yeomans ◽  
Thomas Anthony Anderson

2000 ◽  
Vol 84 (3) ◽  
pp. 1505-1518 ◽  
Author(s):  
Michael S. Jones ◽  
Kurt D. MacDonald ◽  
ByungJu Choi ◽  
F. Edward Dudek ◽  
Daniel S. Barth

Oscillatory activity in excess of several hundred hertz has been observed in somatosensory evoked potentials (SEP) recorded in both humans and animals and is attracting increasing interest regarding its role in brain function. Currently, however, little is known about the cellular events underlying these oscillations. The present study employed simultaneous in-vivo intracellular and epipial field-potential recording to investigate the cellular correlates of fast oscillations in rat somatosensory cortex evoked by vibrissa stimulation. Two distinct types of fast oscillations were observed, here termed “fast oscillations” (FO) (200–400 Hz) and “very fast oscillations” (VFO) (400–600 Hz). FO coincided with the earliest slow-wave components of the SEP whereas VFO typically were later and of smaller amplitude. Regular spiking (RS) cells exhibited vibrissa-evoked responses associated with one or both types of fast oscillations and consisted of combinations of spike and/or subthreshold events that, when superimposed across trials, clustered at latencies separated by successive cycles of FO or VFO activity, or a combination of both. Fast spiking (FS) cells responded to vibrissae stimulation with bursts of action potentials that closely approximated the periodicity of the surface VFO. No cells were encountered that produced action potential bursts related to FO activity in an analogous fashion. We propose that fast oscillations define preferred latencies for action potential generation in cortical RS cells, with VFO generated by inhibitory interneurons and FO reflecting both sequential and recurrent activity of stations in the cortical lamina.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii102-ii103
Author(s):  
Syed Faaiz Enam ◽  
Jianxi Huang ◽  
Cem Kilic ◽  
Connor Tribble ◽  
Martha Betancur ◽  
...  

Abstract As a cancer therapy, hypothermia has been used at sub-zero temperatures to cryosurgically ablate tumors. However, these temperatures can indiscriminately damage both tumorous and healthy cells. Additionally, strategies designed to kill tumor typically accelerate their evolution and recurrence can be inevitable in cancers such as glioblastoma (GBM). To bypass these limitations, here we studied the use of hypothermia as a cytostatic tool against cancer and deployed it against an aggressive rodent model of GBM. To identify the minimal dosage of ‘cytostatic hypothermia’, we cultured at least 4 GBM lines at 4 continuous or intermittent degrees of hypothermia and evaluated their growth rates through a custom imaging-based assay. This revealed cell-specific sensitivities to hypothermia. Subsequently, we examined the effects of cytostatic hypothermia on these cells by a cursory study of their cell-cycle, energy metabolism, and protein synthesis. Next, we investigated the use of cytostatic hypothermia as an adjuvant to chemotherapy and CAR T immunotherapy. Our studies demonstrated that cytostatic hypothermia did not interfere with Temozolomide in vitro and may have been synergistic against at least 1 GBM line. Interestingly, we also demonstrated that CAR T immunotherapy can function under cytostatic hypothermia. To assess the efficacy of hypothermia in vivo, we report the design of an implantable device to focally administer cytostatic hypothermia in an aggressive rodent model of F98 GBM. Cytostatic hypothermia significantly doubled the median survival of tumor-bearing rats with no obvious signs of distress. The absence of gross behavioral alterations is in concurrence with literature suggesting the brain is naturally resilient to focal hypothermia. Based on these findings, we anticipate that focally administered cytostatic hypothermia alone has the potential to delay tumor recurrence or increase progression-free survival in patients. Additionally, it could also provide more time to evaluate concomitant, curative cytotoxic treatments.


2011 ◽  
Vol 21 (8) ◽  
pp. 2359-2364 ◽  
Author(s):  
Peter J. Manley ◽  
Amy Zartman ◽  
Daniel V. Paone ◽  
Christopher S. Burgey ◽  
Darrell A. Henze ◽  
...  

1999 ◽  
Vol 354 (1381) ◽  
pp. 411-416 ◽  
Author(s):  
Bomie Han ◽  
Gerald D. Fischbach

The neuromuscular junction is a specialized synapse in that every action potential in the presynaptic nerve terminal results in an action potential in the postsynaptic membrane, unlike most interneuronal synapses where a single presynaptic input makes only a small contribution to the population postsynaptic response. The postsynaptic membrane at the neuromuscular junction contains a high density of neurotransmitter (acetylcholine) receptors and a high density of voltage–gated Na + channels. Thus, the large acetylcholine activated current occurs at the same site where the threshold for action potential generation is low. Acetylcholine receptor inducing activity (ARIA), a 42 kD protein, that stimulates synthesis of acetylcholine receptors and voltage–gated Na + channels in cultured myotubes, probably plays the same roles at developing and mature motor endplates in vivo . ARIA is synthesized as part of a larger, transmembrane, precursor protein called proARIA. Delivery of ARIA from motor neuron cell bodies in the spinal cord to the target endplates involves several steps, including proteolytic cleavage of proARIA. ARIA is also expressed in the central nervous system and it is abundant in the molecular layer of the cerebellum. In this paper we describe our first experiments on the processing and release of ARIA from subcellular fractions containing synaptosomes from the chick cerebellum as a model system.


2017 ◽  
Vol 43 (5) ◽  
pp. 1961-1973 ◽  
Author(s):  
Yan Bai ◽  
Zhenli Su ◽  
Hanqi Sun ◽  
Wei Zhao ◽  
Xue Chen ◽  
...  

Background/Aims: High-fat diet (HFD) causes cardiac electrical remodeling and increases the risk of ventricular arrhythmias. Aloe-emodin (AE) is an anthraquinone component isolated from rhubarb and has a similar chemical structure with emodin. The protective effect of emodin against cardiac diseases has been reported in the literature. However, the cardioprotective property of AE is still unknown. The present study investigated the effect of AE on HFD-induced QT prolongation in rats. Methods: Adult male Wistar rats were randomly divided into three groups: control, HFD, and AE-treatment groups. Normal diet was given to rats in the control group, high-fat diet was given to rats in HFD and AE-treatment groups for a total of 10 weeks. First, HFD rats and AE-treatment rats were fed with high-fat diet for 4 weeks to establish the HFD model. Serum total cholesterol and triglyceride levels were measured to validate the HFD model. Afterward, AE-treatment rats were intragastrically administered with 100 mg/kg AE each day for 6 weeks. Electrocardiogram monitoring and whole-cell patch-clamp technique were applied to examine cardiac electrical activity, action potential and inward rectifier K+ current (IK1), respectively. Neonatal rat ventricular myocytes (NRVMs) were subjected to cholesterol and/or AE. Protein expression of Kir2.1 was detected by Western blot and miR-1 level was examined by real-time PCR in vivo and in vitro, respectively. Results: In vivo, AE significantly shortened the QT interval, action potential duration at 90% repolarization (APD90) and resting membrane potential (RMP), which were markedly elongated by HFD. AE increased IK1 current and Kir2.1 protein expression which were reduced in HFD rats. Furthermore, AE significantly inhibited pro-arrhythmic miR-1 in the hearts of HFD rats. In vitro, AE decreased miR-1 expression levels resulting in an increase of Kir2.1 protein levels in cholesterol-enriched NRVMs. Conclusions: AE prevents HFD-induced QT prolongation by repressing miR-1 and upregulating its target Kir2.1. These findings suggest a novel pharmacological role of AE in HFD-induced cardiac electrical remodeling.


Author(s):  
Vincenzo Crunelli ◽  
Adam C. Errington ◽  
Stuart W. Hughes ◽  
Tibor I. Tóth

During non-rapid eye movement sleep and certain types of anaesthesia, neurons in the neocortex and thalamus exhibit a distinctive slow (<1 Hz) oscillation that consists of alternating UP and DOWN membrane potential states and which correlates with a pronounced slow (<1 Hz) rhythm in the electroencephalogram. While several studies have claimed that the slow oscillation is generated exclusively in neocortical networks and then transmitted to other brain areas, substantial evidence exists to suggest that the full expression of the slow oscillation in an intact thalamocortical (TC) network requires the balanced interaction of oscillator systems in both the neocortex and thalamus. Within such a scenario, we have previously argued that the powerful low-threshold Ca 2+ potential (LTCP)-mediated burst of action potentials that initiates the UP states in individual TC neurons may be a vital signal for instigating UP states in related cortical areas. To investigate these issues we constructed a computational model of the TC network which encompasses the important known aspects of the slow oscillation that have been garnered from earlier in vivo and in vitro experiments. Using this model we confirm that the overall expression of the slow oscillation is intricately reliant on intact connections between the thalamus and the cortex. In particular, we demonstrate that UP state-related LTCP-mediated bursts in TC neurons are proficient in triggering synchronous UP states in cortical networks, thereby bringing about a synchronous slow oscillation in the whole network. The importance of LTCP-mediated action potential bursts in the slow oscillation is also underlined by the observation that their associated dendritic Ca 2+ signals are the only ones that inform corticothalamic synapses of the TC neuron output, since they, but not those elicited by tonic action potential firing, reach the distal dendritic sites where these synapses are located.


Sign in / Sign up

Export Citation Format

Share Document