A −40‐dB EVM 20‐MHz subsampling multistandard receiver architecture with dynamic carrier detection, bandwidth estimation, and EVM optimization

2019 ◽  
Vol 47 (4) ◽  
pp. 549-560 ◽  
Author(s):  
Ajinkya Kale ◽  
Johannes Sturm ◽  
Vijaya Sankara Rao Pasupureddi
2009 ◽  
Vol E92-B (12) ◽  
pp. 3893-3902
Author(s):  
Hyeong-Min NAM ◽  
Chun-Su PARK ◽  
Seung-Won JUNG ◽  
Sung-Jea KO

Author(s):  
Kiran Ahuja ◽  
Brahmjit Singh ◽  
Rajesh Khanna

Background: With the availability of multiple options in wireless network simultaneously, Always Best Connected (ABC) requires dynamic selection of the best network and access technologies. Objective: In this paper, a novel dynamic access network selection algorithm based on the real time is proposed. The available bandwidth (ABW) of each network is required to be estimated to solve the network selection problem. Method: Proposed algorithm estimates available bandwidth by taking averages, peaks, low points and bootstrap approximation for network selection. It monitors real-time internet connection and resolves the selection issue in internet connection. The proposed algorithm is capable of adapting to prevailing network conditions in heterogeneous environment of 2G, 3G and WLAN networks without user intervention. It is implemented in temporal and spatial domains to check its robustness. Estimation error, overhead, estimation time with the varying size of traffic and reliability are used as the performance metrics. Results: Through numerical results, it is shown that the proposed algorithm’s ABW estimation based on bootstrap approximation gives improved performance in terms of estimation error (less than 20%), overhead (varies from 0.03% to 83%) and reliability (approx. 99%) with respect to existing techniques. Conclusion: Our proposed methodology of network selection criterion estimates the available bandwidth by taking averages, peaks, and low points and bootstrap approximation method (standard deviation) for the selection of network in the wireless heterogeneous environment. It monitors real-time internet connection and resolves internet connections selection issue. All the real-time usage and test results demonstrate the productivity and adequacy of available bandwidth estimation with bootstrap approximation as a practical solution for consistent correspondence among heterogeneous wireless networks by precise network selection for multimedia services.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2925
Author(s):  
Antonio Mederos-Barrera ◽  
Cristo Jurado-Verdu ◽  
Victor Guerra ◽  
Jose Rabadan ◽  
Rafael Perez-Jimenez

Visible light communications (VLC) technology is emerging as a candidate to meet the demand for interconnected devices’ communications. However, the costs of incorporating specific hardware into end-user devices slow down its market entry. Optical camera communication (OCC) technology paves the way by reusing cameras as receivers. These systems have generally been evaluated under static conditions, in which transmitting sources are recognized using computationally expensive discovery algorithms. In vehicle-to-vehicle networks and wearable devices, tracking algorithms, as proposed in this work, allow one to reduce the time required to locate a moving source and hence the latency of these systems, increasing the data rate by up to 2100%. The proposed receiver architecture combines discovery and tracking algorithms that analyze spatial features of a custom RGB LED transmitter matrix, highlighted in the scene by varying the cameras’ exposure time. By using an anchor LED and changing the intensity of the green LED, the receiver can track the light source with a slow temporal deterioration. Moreover, data bits sent over the red and blue channels do not significantly affect detection, hence transmission occurs uninterrupted. Finally, a novel experimental methodology to evaluate the evolution of the detection’s performance is proposed. With the analysis of the mean and standard deviation of novel K parameters, it is possible to evaluate the detected region-of-interest scale and centrality against the transmitter source’s ideal location.


Sign in / Sign up

Export Citation Format

Share Document