scholarly journals Disease extent and anti‐tubercular treatment response correlates with Mycobacterium tuberculosis ‐specific CD4 T‐cell phenotype regardless of HIV‐1 status

2020 ◽  
Vol 9 (9) ◽  
Author(s):  
Catherine Riou ◽  
Elsa Du Bruyn ◽  
Sheena Ruzive ◽  
Rene T Goliath ◽  
Cecilia S Lindestam Arlehamn ◽  
...  
2006 ◽  
Vol 177 (1) ◽  
pp. 479-491 ◽  
Author(s):  
Daniel Lewandowski ◽  
Miriam Marquis ◽  
Francine Aumont ◽  
Annie-Claude Lussier-Morin ◽  
Marianne Raymond ◽  
...  

2015 ◽  
Vol 212 (9) ◽  
pp. 1449-1463 ◽  
Author(s):  
Egidio Torrado ◽  
Jeffrey J. Fountain ◽  
Mingfeng Liao ◽  
Michael Tighe ◽  
William W. Reiley ◽  
...  

CD4+ T cells mediate protection against Mycobacterium tuberculosis (Mtb); however, the phenotype of protective T cells is undefined, thereby confounding vaccination efforts. IL-27 is highly expressed during human tuberculosis (TB), and absence of IL-27R (Il27ra) specifically on T cells results in increased protection. IL-27R deficiency during chronic Mtb infection does not impact antigen-specific CD4+ T cell number but maintains programmed death-1 (PD-1), CD69, and CD127 expression while reducing T-bet and killer cell lectin-like receptor G1 (KLRG1) expression. Furthermore, T-bet haploinsufficiency results in failure to generate KLRG1+, antigen-specific CD4+ T cells, and in improved protection. T cells in Il27ra−/− mice accumulate preferentially in the lung parenchyma within close proximity to Mtb, and antigen-specific CD4+ T cells lacking IL-27R are intrinsically more fit than intact T cells and maintain IL-2 production. Improved fitness of IL-27R–deficient T cells is not associated with increased proliferation but with decreased expression of cell death–associated markers. Therefore, during Mtb infection, IL-27R acts intrinsically on T cells to limit protection and reduce fitness, whereas the IL-27R–deficient environment alters the phenotype and location of T cells. The significant expression of IL-27 in TB and the negative influence of IL-27R on T cell function demonstrate the pathway by which this cytokine/receptor pair is detrimental in TB.


1999 ◽  
Vol 96 (26) ◽  
pp. 15167-15172 ◽  
Author(s):  
N. M. Ferguson ◽  
F. deWolf ◽  
A. C. Ghani ◽  
C. Fraser ◽  
C. A. Donnelly ◽  
...  

Immuno ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 119-131
Author(s):  
Jana Palmowski ◽  
Kristina Gebhardt ◽  
Thomas Reichel ◽  
Torsten Frech ◽  
Robert Ringseis ◽  
...  

CD4+ T cells are sensitive to peripheral changes of cytokine levels and metabolic substrates such as glucose and lactate. This study aimed to analyze whether factors released after exercise alter parameters of human T cell metabolism, specifically glycolysis and oxidative phosphorylation. We used primary human CD4+ T cells activated in the presence of autologous serum, which was collected before (CO) and after a 30-min exercise intervention (EX). In the course of activation, cells and supernatants were analyzed for cell viability and diameter, real-time oxygen consumption by using PreSens Technology, mRNA expression of glycolytic enzymes and complexes of the electron transport chain by real-time PCR, glucose, and lactate levels in supernatants, and in vitro differentiation by flow cytometry. EX did not alter T cell phenotype, viability, or on-blast formation. Similarly, no difference between CO and EX were found for CD4+ T cell activation and cellular oxygen consumption. In contrast, higher levels of glucose were found after 48 h activation in EX conditions. T cells activated in autologous exercise serum expressed lower HK1 mRNA and higher IFN-γ receptor 1. We suggest that the exercise protocol used was not sufficient to destabilize the immune metabolism of T cells. Therefore, more intense and prolonged exercise should be used in future studies.


Sign in / Sign up

Export Citation Format

Share Document